7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какими бывают подшипники качения

Какими бывают подшипники качения

Конструкция подшипника качения известна благодаря его способности обеспечивать свободное качение без повреждения, трения и износа при вращении. В современной механике ему нет аналогов, которые могли бы с большей эффективностью снижать трение и скольжение вращающихся частей.

История возникновения и развития

Отсчёт истории начинается с 3500 года до нашей эры, во времена Древнего Египта, когда его жители использовали примитивные и очень эффективные на то время опорные подшипники без применения шариков. Ближе к нашему времени, в 700-м году до нашей эры, кельты достаточно активно стали применять изделия, аналогичные современным цилиндрическим подшипникам качения.

Следующая точка в истории это 330 год до нашей эры, когда инженер Древней Греции Диад создал осадную машину, основным отличием которой отмечается применение простых скользящих элементов.

В 1490 году Леонардо Да Винчи опубликовал первый чертёж подшипника качения в мире. Отмечается тот факт, что это изобретение произвело большое впечатление в кругу специалистов этого профиля. В 1794 году он был впервые запатентован. А в 1839 году американец Исаак Баббит изобрёл специальный металлический сплав, из которого в дальнейшем изготавливались шарики. В состав этого сплава входили медь, свинец, сурьма и олово.

Большим прорывом этой области считается 1853 год, когда Филлипп Мориц Фишер создал конструкцию педального велосипеда с применением специализированных роликовых подшипников в его механизмах. Последним значимым событием стало то, что в 1883 Фридрих Фишер создал машину, которая шлифовала шарики из закалённой стали. За счёт её создания появился всемирно известный швейтфуртский подшипниковый завод, а в скором времени эта технология стала использоваться повсюду.

Классификация, виды и типы

Подшипник представляет собой кинематический механизм, задача которого состоит в определении положения подвижных элементов частей конструкции и обеспечение их более эффективного вращения относительно друг друга. Он также обеспечивает опору вращающемуся валу механизма. Параллельно с этим выполняет функцию распределения радиальной и осевой нагрузки, передавая её на корпус всей машины. Благодаря этим свойствам вал фиксируется в нужном положении и одновременно вращается вокруг своей оси.

Классификация подшипников качения имеет следующий перечень:

  • Шариковый. Главной особенностью выделяется основной подвижный элемент — шарики. Считается самым распространненым видом, наиболее активно используется в автомобилях, электродвигателях, бытовом инструменте. Благодаря их сферической форме он может вращаться в разные стороны, предназначен на выдерживание радиальной и осевой нагрузки. Но из числа недостатков можно отметить малую площадь соприкосновения, поэтому в автомобиле их применяют в местах с низкой нагрузкой без воздействия ударов и вибраций. Использование шарикоподшипников для большой нагрузки влечёт за собой увеличение диаметра шариков, поэтому размер всего элемента увеличивается.
  • Роликовый. Состоит из деталей, представленных в цилиндрической форме. Различные радиальные нагрузки, оказываемые на ролики, равномерно распределяются по широкому пятну соприкосновения. Из-за этого они считаются оптимальным вариантом для использования в тяжёлых условиях. Но из-за цилиндрической формы такой вид не в состоянии обеспечивать большие осевые нагрузки. В узлах с малым диаметром вала применяется роликовый тип и для установки в труднодоступные места.
  • Конический. Устройство подшипника состоит из конусных роликов. Применяются они для удерживания высокой радиальной, осевой и ударной нагрузок. Основным местом установки считается ступица колеса машины. Некоторые производители в одном подшипнике устанавливают два ряда конических роликов по зеркальной схеме.

Устройство и составляющие подшипника

Какие бывают подшипники описано выше, но в большинстве своём их объединяет состав элементов, из которых они состоят.:

  • Обойма. По геометрической форме представляет собой кольцо, внутренняя и наружная поверхность которого обработаны. Между этими обоймами движутся шарики. В современном автомобильном производстве внешняя обойма может встраиваться в ступицу и ремонт подшипника производится путём замены всего узла в сборе.
  • Сепаратор. Обойма специальной формы, по окружности которой находятся отверстия диаметром с используемый шарик. Выполняет роль ограничителя движения шарика внутри обойм.
  • Сальник. Применяется для замыкания открытой боковой поверхности подшипника, изготавливается из специальной резины. Препятствует попаданию грязи в смазку подшипника. Наиболее подвержена износу та часть, которая продаётся по отдельности для проведения ремонта.

Определение параметров по маркировке

Государственный стандарт определяет конструктивные параметры и характеристики устройства.

Корпус подшипника может быть с выемкой и без неё. В первом случае применяется на обработанных поверхностях при удерживании радиальной нагрузки. А без выемки устанавливаются в противоположном случае. Корпус бывает разной ширины, для определения типа используют следующие аббревиатуры:

  • ШМ — Широкий неразъемный.
  • УБ — Узкий неразъемный.
  • РШ — Широкий разъёмный.
  • РУ — Узкий разъёмный.

При изготовлении этих изделий производителем строго соблюдаются установленные законодательством стандарты. Поэтому производитель вместе со своим изделием предоставляет сопроводительную документацию о нём. Принятая маркировка на территории нашей страны состоит из следующих пунктов:

  • Основного обозначения.
  • Дополнительных префиксов.

Например, маркировку: 6−18030ПР20П. Основные параметры заложены в шесть цифр. Первоначальная цифра 6 — это класс точности изготовления изделия. А ПР20П можно расшифровать так:

  • П — префикс степени шероховатости поверхности.
  • Р2О — Тип используемой смазки подвижных частей.
  • П — Показатель уровня шума.

Остальной цифровой индекс обозначает:

  • Тип подшипника.
  • Указатель серии наружного диаметра и ширины.
  • Внутренний установочный диаметр.
  • Конструктивная особенность конкретной модели.

Класс точности изделия

Этот параметр указывает в основном на сферу применения изделия. Например, в современных автоматизированных станках применяются только изделия с высшим классом точности. В остальных массово применяемых механизмах используются подшипники с более низким уровнем качества при изготовлении. Класс точности может быть следующим:

  • Нормальный.
  • Сверхвысокий, применяемый индекс — 2.
  • Особо высокий — 4.
  • Высокий — 5.
  • Повышенный — 6.
  • Пониженный — от 7 до 8.

Анализируя вышеприведённый пример, можно сделать вывод, что изделие относится к повышенной степени точности.

Применение подшипников

Основное назначение этих устройств — это снижение фактора трения между подвижными элементами механизма. Могут применяться в автомобильной и сельскохозяйственной промышленности и при изготовлении различного производственного и бытового оборудования.

Преимущества и недостатки конструкции

Преимуществами изделий с такой конструкцией прежде всего считается низкий коэффициент трения и малая чувствительность к смазывающим материалам, дешевизна изготовления

Из числа минусов отмечается слабая стойкость к ударным нагрузкам и невозможность эксплуатации в агрессивных средах и при очень высоких оборотах.

Подшипники качения. Виды, маркировка, выбор подшипников

1. Виды подшипников качения

Подшипники, в которых используется трение качения благодаря установке шариков или роликов между опорными поверхностями оси или вала, получили название – подшипники качения.

Подшипники подразделяют на:

  • радиальные, которые воспринимают радиальные нагрузки;
  • упорные, которые воспринимают только осевые нагрузки;
  • радиально-упорные, которые воспринимают одновременно радиальные и осевые нагрузки.

По сравнению с подшипниками скольжения подшипники качения имеют следующие преимущества:

  • малый коэффициент трения;
  • большую грузоподъемность при меньшей ширине подшипника;
  • незначительный расход смазочных материалов;
  • взаимозаменяемость;
  • простоту монтажа, ухода и обслуживания.

К недостаткам относятся:

  • значительно меньшая долговечность при больших частотах вращения и при больших нагрузках;
  • ограниченная способность воспринимать ударные нагрузки;
  • большие наружные диаметры по сравнению с подшипниками скольжения.

По форме тел качения (рис. 1) подшипники качения делят на шариковые и роликовые. Ролики могут быть цилиндрические короткие, цилиндрические длинные, витые, игольчатые, бочкообразные и конические. По числу рядов тел качения различают подшипники однорядные, двухрядные и специальные с большим числом рядов.

Рис. 1. Типы подшипников качения: а – шариковый радиальный; б – шариковый радиальный сферический двухрядный; в – роликовый радиальный; г – роликовый радиальный сферический двухрядный; д – роликовый радиальный двухрядный; е – шариковый радиально-упорный; ж – роликовый конический

По способу компенсации перекосов вала подшипники делят на несамоустанавливающиеся и самоустанавливающиеся (со сферической внутренней поверхностью наружного кольца у радиальных подшипников).

По направлению воспринимаемой нагрузки бывают радиальные, радиально-упорные и упорные подшипники.

Читать еще:  Как выбрать канцелярский степлер?

По радиальным габаритам при одинаковом внутреннем диаметре подшипники делят на следующие серии: сверхлегкие, особолегкие, легкие, средние, тяжелые; по ширине подшипники различают: узкие, нормальные, широкие и особо широкие.

Маркировка подшипников качения отражает основные параметры и конструктивные особенности подшипников. Обозначения наносят на торец колец подшипников.

Первые две цифры, считая справа налево, означают внутренний диаметр подшипника. Для подшипников с внутренним диаметром от 20 до 495 мм эти две цифры следует умножить на 5, чтобы получить фактический внутренний диаметр в миллиметрах. Для подшипников с диаметром от 20 мм принято следующее обозначение внутреннего диаметра:

  • 00 для диаметра 10 мм,
  • 01 – 12 мм,
  • 02 – 15 мм
  • 03 – 17 мм.

Третья цифра справа указывает серию подшипника по диаметральным размерам и ширине. Приняты следующие обозначения:

  • 1 – особо легкая серия;
  • 2 – легкая серия;
  • 3 – средняя серия;
  • 4 – тяжелая серия;
  • 5 – легкая широкая серия;
  • 6 – средняя широкая серия.

Четвертая цифра справа означает тип подшипника. Приняты следующие обозначения типов:

  • 0 – радиальный шариковый однорядный;
  • 1 – радиальный шариковый двухрядный сферический;
  • 2 – радиальный с короткими цилиндрическими роликами;
  • 3 – радиальный двухрядный сферический с бочкообразными роликами;
  • 4 – радиальный роликовый с длинными цилиндрическими роликами и игольчатый;
  • 5 – радиальный с витыми роликами;
  • 6 – радиально-упорный шариковый;
  • 7 – роликовый конический радиальноупорный;
  • 8 – упорный шариковый;
  • 9 – упорный роликовый.

Пятая и шестая цифры справа характеризуют конструктивные особенности подшипника.

Седьмая цифра справа означает серию подшипника по ширине.

Совместно с седьмой цифрой справа, используемой для обозначения серии по ширине подшипника, третья цифра определяет размерную серию подшипника по диаметру (см. табл. 1).

Таблица 1. Обозначение серий подшипников

Пример обозначения подшипника

Пример обозначения подшипника

3-я цифра справа

7-я цифра справа

3-я цифра справа

7-я цифра справа

ненормальные внутренние диаметры

Примеры маркировки подшипников:

23 – подшипник шариковый радиальный однорядный (четвертая цифра 0) легкой серии (цифра 2) с внутренним диаметром 3 мм.

203 – подшипник шариковый радиальный однорядный (четвертая цифра 0) легкой серии (третья цифра 2) с внутренним диаметром 17 мм (03).

2230 – подшипник роликовый радиальный с короткими цилиндрическими роликами (четвертая цифра 2) легкой серии (третья цифра 2) с внутренним диаметром 150 (30×5)мм.

3613 – подшипник роликовый сферический двухрядный (четвертая цифра 3) средней широкой (третья цифра 6, седьмая 0) серии с внутренним диаметром 65 (15×5) мм.

60018 – подшипник шариковый радиальный однорядный (четвертая цифра 0) особо-легкой серии (вторая цифра 1) с внутренним диаметром 8 мм, с одной защитной шайбой (пятая цифра 6).

150212 – подшипник шариковый радиальный легкой серии с одной защитной шайбой и со стопорной канавкой на наружном кольце (пятая цифра 5 и шестая – 1).

111217 – подшипник шариковый радиальный сферический двухрядный (четвертая цифра 1) легкой серии (третья цифра 2, седьмая – 0) с коническим отверстием внутреннего кольца (пятая цифра 1 и шестая – 1), d = 85 мм.

67202 – подшипник роликовый конический однорядный (четвертая цифра 7) легкой серии (третья цифра 2) с упорным бортом на наружном кольце (пятая цифра 6). Диаметр внутреннего кольца подшипника 15 мм (первая и вторая цифры 02).

2. Выбор подшипников качения

При выборе типа и размеров шарико- и роликоподшипников необходимо учитывать следующие факторы:

  • величину и направление нагрузки (радиальная, осевая, комбинированная);
  • характер нагрузки (постоянная, переменная, ударная);
  • частоту вращения кольца подшипника;
  • необходимую долговечность (желаемый срок службы, выраженный в часах или миллионах оборотов);
  • окружающую среду (температуру, влажность, кислотность и т. п.);
  • особые требования к подшипнику, предъявляемые конструкцией узла машины или механизма (необходимость самоустанавливаемости подшипника в опоре с целью компенсации перекосов вала или корпуса, обеспечение перемещения вала в осевом направлении и т. п.).

Подшипники выбирают в следующем порядке:

  • намечают тип подшипника, исходя из условий эксплуатации и конструкции конкретного подшипникового механизма;
  • определяют типоразмер подшипника в зависимости от величины и направления действующих нагрузок, частоты вращения и требуемого срока службы;
  • назначают класс точности подшипника с учетом требований к точности вращения механизма.

Исходя из действующих радиальных и осевых нагрузок, вычисляют приведенную нагрузку, которая при приложении к подшипнику при вращении внутреннего кольца и неподвижном наружном кольце обеспечивала бы такую же долговечность, какую достигает подшипник в действительных условиях нагружения и вращения.

По приведенной нагрузке, частоте вращения подшипника и требуемому сроку службы рассчитывают необходимую грузоподъемность, являющуюся основной характеристикой подшипника.

Эту работу по подбору подшипника выполняют в том случае, когда отсутствуют чертежи или руководство по эксплуатации механизма.

При установке подшипников качения в сборочные единицы необходимо создать зазоры, обеспечивающие свободное, без защемления шариков или роликов вращение подшипников. Следует учитывать, что при работе от выделяющегося тепла происходит расширение внутреннего кольца подшипника и сжатие его наружного кольца, в результате чего при слишком плотной посадке шарики или ролики могут защемляться и подшипник быстро износится или разрушится. Чрезмерный зазор в посадочных местах также ухудшает работу подшипника: кольца его начинают проскальзывать, вызывая износ посадочных поверхностей и вибрацию механизма. Принято устанавливать подшипник так, чтобы кольцо подшипника, которое установлено во вращающейся детали (шкив с наружным кольцом подшипника или шип вала с внутренним кольцом), было установлено по неподвижной посадке (с небольшим натягом), а противоположное кольцо должно иметь возможность самоустанавливаться по неподвижно закрепленному кольцу и должно быть установлено по переходной или скользящей посадке.

Какими бывают подшипники качения

Подшипники качения. Общие сведения. Классификация и область применения

Подшипники качения, как и подшипники скольжения, предназначены для поддержания вращающихся осей и валов.

Подшипники качения – это опоры вращающихся или качающихся деталей, использующие элементы качения (шарики или ролики) и работающие на основе трения качения.

Электродвигатели, подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в на­стоящее время немыслимы без подшипников качения. В настоящее время подшипники качения являются основным видом опор в машиностроении. Это самые массовые стандартизованные изделия в мире. Их изготовляют на специализированных подшипниковых заводах с наружным диаметром 1,0. 2600 мм и массой 0,5 г… 3500 кг. Самый большой подшипник качения имеет наружный диаметр – 14 м, внутренний – 12 м и массу – 130 тонн. Отечественная промышленность производит свыше 15 тыс. типоразмеров подшипников с внутренними посадочными диаметрами от 0,5 мм до 2 м и более общим количеством до миллиарда штук ежегодно.

Подшипник качения имеет, как правило, более сложную конструкцию в сравнении с подшипником скольжения и, в подавляющем большинстве случаев, является готовым (то есть изготовленным на специализированном предприятии) изделием, устанавливаемым в механизм или машину без какой-либо дополнительной доработки.

Подшипники качения состоят из двух колец — внутреннего 1 и наруж­ного 3, имеющих дорожки качения, тел качения 2 (шариков, роликов или иголок) и сепаратора 4, разделяющего тела качения (рис. 16, а). Однако при необходимости снижения радиальных габаритов подшипниковых узлов одно или оба кольца подшипников, а также сепаратор могут отсутствовать. В этом случае тела качения катятся непосредственно по канавкам (дорожкам качения) вала или корпуса. В зависимости от: формы тел качения различают подшипники шариковые (рис. 16, д, б, ж, и) и роликовые (рис. 16, в, г, е, з, к). Разновидностью роликовых подшипников являются игольчатые подшипники (рис. 16, д).

Основными элементами подшипников качения являются тела каче­ния — шарики или ролики, установленные между кольцами и удерживае­мые сепаратором на определенном расстоянии друг от друга.

Внутреннее кольцо устанавливают на валу (оси), а наружное — в корпусе. Таким образом, цапфа вала и корпус разделяются телами качения. Это позволяет заменить трение скольжения трением качения и существенно снизить коэффициент трения. Основные стандартные размеры подшипника: d и D — внутренний и наружный диаметры; В — ширина колец.

Размеры подшипника — внутренний d и наружный D диаметры, ширина B (высота H) и радиусы r фасок колец — установлены ГОСТ 3478-79. Подшипники качения в диапазоне внутренних диаметров 3…10 мм стандартизованы через 1 мм, до 20 мм – через 2…3 мм, до 110 мм – через 5 мм.

Подшипниковые узлы, кроме подшипников качения, имеют корпус с крышками, устройства для крепления колец, защитные и смазочные устройства.

Материалы подшипников качения.

Материалы подшипников качения назначаются с учётом высоких требований к твёрдости и износостойкости колец и тел качения. Здесь используются шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ, а также цементируемые легированные стали 18ХГТ и 20Х2Н4А. Твёрдость колец и роликов обычно HRC 60. 65, а у шариков немного больше – HRC 62. 66, поскольку площадка контактного давления у шарика меньше. Сепараторы изготавливают из мягких углеродистых сталей либо из антифрикционных бронз для высокоскоростных подшипников. Широко внедряются сепараторы из дюралюминия, металлокерамики, текстолита, пластмасс. Сепараторы высокоскоростных подшипников называют массивными и выполняют из текстолита, фторпласта, латуни, бронзы с предпочтительным центрированием их по наружному кольцу ПК.

Читать еще:  Схема подключения однофазного счетчика электроэнергии: правильное подключение к сети с автоматами

В особых условиях хорошо зарекомендовали себя керамические подшипники из нитрида кремния Si3N4 (E = 3,1∙10 5 МПа; ρ = 3,2 г/см 3 ; Н = 80 HRC; t° до 1200°С; αt в 4 раза меньше, чем у стали). Но материал очень хрупкий. Практика показала, что лучше иметь комбинированные ПК: стальные кольца и керамические тела качения.

Для обеспечения нормальной и долговечной работы подшипников ка­чения к качеству их изготовления и термической обработке тел качения и колец предъявляют высокие требования.

Подшипники качения в отличие от подшипников скольжения стан­дартизованы. Подшипники качения различных конструкций (диапазон на­ружных диаметров 1,0-2600 мм, масса 0,5-3,5 т, например, микроподшип­ники с шариками диаметром 0,35 мм и подшипники с шариками диаметром 203 мм) изготовляют на специализированных подшипниковых заводах.

Классификация подшипников качения.

Выпускаемые в СНГ подшипники качения классифицируют по направлению воспринимаемой нагрузки, в соответствии с ГОСТ3395-75 — радиальные, радиально-упорные, упор­но-радиальные и упорные.

Рис. 16. Подшипники качения: а, б, в, г, д, е — радиальные подшипники; ж, з — радиально-упорные подшипники;

и, к — упорные подшипники; 1 — внутреннее кольцо; 2 — тело ка­чения; 3 — наружное кольцо; 4— сепаратор

Радиальные подшипники (см. рис. 16, а-е) воспринимают (в основ­ном) радиальную нагрузку, т. е. нагрузку, направленную перпендикулярно к геометрической оси вала.

Упорные подшипники (см. рис. 16, и, к) воспринимают только осе­вую нагрузку.

Радиально-упорные (см. рис. 16, ж, з) и упорно-радиальные подшип­ники могут одновременно воспринимать как радиальную, так и осевую на­грузку. При этом упорно-радиальные подшипники предназначены для пре­обладающей осевой нагрузки.

В зависимости от соотношения радиальных габаритных размеров (рис.16.1) наружного и внутреннего диа­метров подшипники делят на серии (7 серии, при d – const, D – var): сверхлегкую, особо легкую, легкую, среднюю, тяжелую, легкую широкую, среднюю широкую. Основное распространение имеют легкие и средние узкие серии.

Рис. 16.1. Размерные серии подшипников качения: а- особо легкая; б –легкая;

в – легкая широкая; г- средняя; д – средняя широкая; е -тяжелая

по ширине (5 серии, при d и D – const, B(T) – var): особоузкие, узкие, нормальные, широкие и особо широкие.

В зависимости от серии при одном и том же внутреннем диаметре кольца подшипника наружный диаметр кольца и его ширина изменяются.

Точность подшипников качения определяется:

а) точностью основных размеров;

б) точность вращения.

Точность основных размеров определяется отклонениями размеров внутреннего и наружного диаметров и ширины кольца. Отклонения размеров диаметров определяет характер посадки.

Точность вращения характеризуется радиальным и боковым биением дорожки качения. В РФ подшипники качения выпускаются следующих классов в порядке возрастания точности:

По классам точности подшипники различают следующим образом (по ГОСТ 520-89):

«0» – нормального класса (радиальное биение внутреннего кольца 20 мкм);

«6» – повышенной точности (радиальное биение внутреннего кольца 10 мкм);

«5» – высокой точности (радиальное биение внутреннего кольца 5 мкм);

«4» – особовысокой точности (радиальное биение внутреннего кольца 3 мкм);

«2» – сверхвысокой точности (радиальное биение внутреннего кольца 2,5 мкм);

8 и 7 – грубые ниже 0;

6Х – только для роликовых конических подшипников.

При выборе класса точности подшипника необходимо помнить о том, что «чем точнее, тем дороже». Для иллюстрации соотношения точности подшипников разных классов и их стоимости ниже приведены максимальные величины радиальных биений внутренних колец подшипников с посадочными диаметрами 50…80 мм и относительная стоимость подшипников.

Подшипники качения. Общие сведения. Классификация и область применения

Подшипники качения, как и подшипники скольжения, предназначены для поддержания вращающихся осей и валов.

Электродвигатели, подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в на­стоящее время немыслимы без подшипников качения.

Подшипники качения состоят из двух колец — внутреннего 1 и наруж­ного 3, тел качения 2 (шариков или роликов) и сепаратора 4 (рис. 16, а). В зависимости от: формы тел качения различают подшипники шариковые (рис. 16, д, б, ж, и) и роликовые (рис. 16, в, г, е, з, к). Разновидностью роликовых подшипников являются игольчатые подшипники (рис. 16, д).

Основными элементами подшипников качения являются тела каче­ния — шарики или ролики, установленные между кольцами и удерживае­мые сепаратором на определенном расстоянии друг от друга.

Материалы. Материалы подшипников качения назначаются с учётом высоких требований к твёрдости и износостойкости колец и тел качения. Здесь используются шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ, а также цементируемые легированные стали 18ХГТ и 20Х2Н4А. Твёрдость колец и роликов обычно HRC60. 65, а у шариков немного больше – HRC62. 66, поскольку площадка контактного давления у шарика меньше. Сепараторы изготавливают из мягких углеродистых сталей либо из антифрикционных бронз для высокоскоростных подшипников. Широко внедряются сепараторы из дюралюминия, металлокерамики, текстолита, пластмасс.

Для обеспечения нормальной и долговечной работы подшипников ка­чения к качеству их изготовления и термической обработке тел качения и колец предъявляют высокие требования.

Подшипники качения — это опоры вращающихся или качающихся де­талей. Подшипники качения в отличие от подшипников скольжения стан­дартизованы. Подшипники качения различных конструкций (диапазон на­ружных диаметров 1,0-2600 мм, масса 0,5-3,5 т, например, микроподшип­ники с шариками диаметром 0,35 мм и подшипники с шариками диаметром 203 мм) изготовляют на специализированных подшипниковых заводах.

Выпускаемые в СНГ подшипники качения классифицируют по способности воспринимать нагрузку — радиальные, радиально-упорные, упор­но-радиальные и упорные.

Рис. 16. Подшипники качения: а, б, в, г, д, е — радиальные подшипники; ж, з — радиально-упорные подшипники; и, к — упорные подшипники; 1 — внутреннее кольцо; 2 — тело ка­чения; 3 — наружное кольцо; 4— сепаратор

Радиальные подшипники (см. рис. 16, а-е) воспринимают (в основ­ном) радиальную нагрузку, т. е. нагрузку, направленную перпендикулярно к геометрической оси вала.

Упорные подшипники (см. рис. 16, и, к) воспринимают только осе­вую нагрузку.

Радиально-упорные (см. рис. 16, ж, з) и упорно-радиальные подшип­ники могут одновременно воспринимать как радиальную, так и осевую на­грузку. При этом упорно-радиальные подшипники предназначены для пре­обладающей осевой нагрузки.

В зависимости от соотношения размеров наружного и внутреннего диа­метров, а также ширины подшипники делят на серии: сверхлегкую, особо легкую, легкую, среднюю, тяжелую, легкую широкую, среднюю широкую.

В зависимости от серии при одном и том же внутреннем диаметре кольца подшипника наружный диаметр кольца и его ширина изменяются.

По классам точности подшипники различают следующим образом:

«0» – нормального класса;

«6» – повышенной точности;

«5» – высокой точности;

«4» – особовысокой точности;

«2» – сверхвысокой точности.

При выборе класса точности подшипника необходимо помнить о том, что «чем точнее, тем дороже».

По форме тел качения подшипники делят на шариковые (см. рис. 16, а, б, ж, и), с цилиндрическими роликами (см. рис. 16, в), с кониче­скими роликами (см. рис. 16, з, к), игольчатые (см. рис. 16, д), с витыми роликами (см. рис. 16, е), с бочкообразными роликами (сферическими) (см. рис. 16, г). Тела качения игольчатых подшипников тонкие ролики — иглы диаметром 1,6-5 мм. Длина игл в 5-10 раз больше их диаметра. Се­параторы в игольчатых подшипниках отсутствуют.

По числу рядов тел качения различают однорядные (см. рис. 16, а, в, д-к) и двухрядные (см. рис. 16, б, г) подшипники качения.

По конструктивным и эксплуатационным признакам подшипники делят на самоустанавливающиеся (см. рис. 16, б, г) и несамоустанавливающиеся (см. рис. 16, а, в, д-к).

Под типом подшипника понимают его конструктивную разновидность, определяемую по признакам классификации.

Каждый подшипник качения имеет условное клеймо, обозначающее тип, размер, класс точности, завод-изготовитель.

На неразъемные подшипники клеймо наносят на одно из колец, на разборные — на оба кольца, например, на радиальный подшипник с ко­роткими цилиндрическими роликами (см. рис. 16, в), где наружное коль­цо без бортов и свободно снимается, а внутреннее кольцо с бортами со­ставляет комплект с сепаратором и роликами.

Читать еще:  Продольно-строгальный станок: виды и особенности приборов

На один и тот же диаметр шейки вала предусматривается несколько серий подшипников, которые отличаются размерами колец и тел качения и соответственно величиной воспринимаемых нагрузок.

В пределах каждой серии подшипники равных типов взаимозаменяемы в мировом масштабе. В стандартах указываются: номер подшипника, размеры, вес, предельное число оборотов, статическая нагрузка и коэффициент работоспособности.

Первая и вторая цифры справа условно обозначают его номинальный внутренний диаметр d (диаметр вала). Для определения истинного размера d (в миллиметрах) необходимо указанные две цифры умножить на пять. Например, подшипник . 04 имеет внутренний диаметр 04 • 5 = 20 мм. Это правило распространяется на подшипники с цифрами . 04 и выше, до . 99, т. е. для J = 20h — 495 mm. Подшипники с цифрами. 00 имеют d- 10 мм; . 01 d = 12 мм; . 02 d = 15 мм; . 03 d = 17 мм.

Третья цифра справа обозначает серию подшипника, определяя его на­ружный диаметр: 1 — особо легкая, 2 — легкая; 3 — средняя, 4 — тяжелая; 5 — легкая широкая, 6 — средняя широкая.

Четвертая цифра справа обозначает тип подшипника. Если эта цифра 0, то это означает, что подшипник радиальный шариковый одно­рядный; шариковый однорядный (если левее 0 нет цифр, то 0 не указыва­ют); 1 — радиальный шариковый двухрядный сферический; 2 — радиаль­ный с короткими цилиндрическими роликами; 3 — радиальный роликовый двухрядный сферический; 4 — игольчатый или роликовый с длинными ци­линдрическими роликами; 5 — роликовый с витыми роликами; 6 — радиально-упорный шариковый; 7 — роликовый конический (радиально-упорный); 8 — упорный шариковый; 9 — упорный роликовый.

Так, например, подшипник 7208 является роликовым коническим.

Пятая и шестая цифры справа характеризуют конструктивные особен­ности подшипника (неразборный, с защитной шайбой, с закрепительной втулкой и т. п.).

Например:

— 50312 — радиальный однорядный шарикоподшипник средней серии со стопорной канавкой на наружном кольце;

— 150312 — тот же подшипник с защитной шайбой;

— 36312 — радиально-упорный шариковый однорядный подшипник сред­ней серии, неразборный.

Седьмая цифра справа характеризует серию подшипника по ширине.

ГОСТом установлены следующие классы точности подшипников каче­ния: 0 — нормальный класс (как правило, 0 в обозначении не указывают); 6 — повышенный; 5 — высокий, 4 — особо высокий, 2 — сверхвысокий. Цифру, обозначающую класс точности, ставят слева от условного обозна­чения подшипника и отделяют от него знаком тире; например, 206 означа­ет шариковый радиальный подшипник легкой серии с номинальным диа­метром 30 мм, класса точности 0.

Кроме цифр основного обозначения слева и справа от него могут дополнительные буквенные или цифровые знаки, характеризующие специальные условия изготовления данного подшипника.

Так, класс точности маркируют цифрой слева через тире от основного обозначения. В порядке повышения точности классы точности обозначают: 0, 6, 5, 4, 2. Класс точности, обозначаемой цифрой 0 и соответствующей нормальной точности, не проставляют. В общим машиностроение применяют подшипники классов 0 и 6. в изделиях высокой точности или работающей высокой частотой вращения (шпиндельные узлы скоростных станков, высокооборотный электродвигатели и др.) применяют подшипники класса 5 и 4. подшипники класса точности 2 используют в гироскопических приборах.

Так, например, подшипник 7208 — класса точности 0.

Помимо приведенных выше имеются и дополнительные (более высокие и более низкие) классы точности.

В зависимости от наличия дополнительных требований к уровню вибраций, отклонениям формы и расположения поверхностей качения, моменту трения и др. установлены три категории подшипников: А — повышенные регламентированные нормы; В — регламентированные нормы; С — без дополнительных требований.

Возможные знаки справа от основного обозначения: Е — сепаратор выполнен из пластических материалов; Р — детали подшипника из теп­лостойких сталей; С — подшипник закрытого типа при заполнении сма­зочным материалом и др.

Примеры обозначений подшипников:

— 311 — подшипник шариковый радиальный однорядный, средней серии диаметров 3, серии ширин 0, с внутренним диаметром d = 55 мм, основной конструкции (см. рис. 14.5, а), класса точности 0;

— 6-36209 — подшипник шариковый радиально-упорный однорядный, легкой серии диаметров 2, серии ширин 0, с внутренним диаметром d = 45 мм, с углом контакта а = 12°, класса точности 6;

— 4-12210 — подшипник роликовый радиальный с короткими цилиндрическими роликами, легкой серии диаметров 2, серии ширин 0, с внутренним диаметром d = 50 мм, с одним бортом на наружном кольце (см. рис. 14.9, б), класса точности 4;

— 4-3003124Р — подшипник роликовый радиальный сферический двухрядный особолегкой серии диаметров 1, серии ширин 3, с внутренним диаметром d = 120 мм, основной конструкции (см. рис. 14.8), класса точности 4, детали подшипника изготовлены из теплостойких сталей.

Характеристики подшипников качения.

Наибольшее распространение получили шариковые радиальные одноряд­ные подшипники (см. рис. 16, а). Эти подшипники допускают сравнительно большую угловую скорость, особенно с сепараторами из цветных металлов или из пластмасс, допускают небольшие перекосы вала (от 15′ до 30′) и могут воспринимать незначительные осевые нагрузки. Допустимая осевая нагрузка для радиальных несамоустанавливающихся подшипников не должна превы­шать 70% от неиспользованной радиальной грузоподъемности подшипника.

Роликовые радиальные подшипники с короткими роликами (см. рис. 16, в) по сравнению с аналогичными по габаритным размерам шари­коподшипниками обладают увеличенной грузоподъемностью, хорошо вы­держивают ударные нагрузки. Однако они совершенно не воспринимают осевых нагрузок и не допускают перекоса вала (ролики начинают работать кромками, и подшипники быстро выходят из строя).

Роликовые радиальные подшипники с витыми роликами (см. рис. 16, е) применяют при радиальных нагрузках ударного действия; удары смягчают­ся податливостью витых роликов. Эти подшипники менее требовательны к точности сборки и к защите от загрязнений, имеют незначительные ради­альные габаритные размеры.

Игольчатые подшипники (см. рис. 16, д) отличаются малыми радиаль­ными габаритными размерами, находят применение в тихоходных (до 5 м/с) и тяжелонагруженных узлах, так как выдерживают большие ради­альные нагрузки. В настоящее время их широко используют для замены подшипников скольжения. Эти подшипники воспринимают только радиальные нагрузки и не допускают перекоса валов. Для максимального уменьшения размеров применяют подшипники в виде комплекта игл, не­посредственно опирающихся на вал, с одним наружным кольцом.

Самоустанавливающиеся радиальные двухрядные сферические шариковые (рис. 16, б) и роликовые (см. рис. 16, г) подшипники применяют в тех слу­чаях, когда перекос колец подшипников может составлять до 2—3°. Эти под­шипники допускают незначительную осевую нагрузку (порядка 20% от не­использованной радиальной) и осевую фиксацию вала. Подшипники имеют высокие эксплуатационные показатели, но они дороже, чем однорядные.

Конические роликоподшипники (см. рис. 16, з) находят примене­ние в узлах, где действуют одновременно радиальные и односторонние осевые нагрузки. Эти подшипники могут воспринимать также и ударные нагрузки. Радиальная грузоподъемность их в среднем почти в 2 раза выше, чем у радиальных однорядных шарикоподшипников. Их рекомендуется ус­танавливать при средних и низких угловых скоростях вала (до 15 м/с).

Аналогичное использование имеют радиально-упорные шарикоподшипники (см. рис. 16, ж), применяемые при средних и высоких угловых скоростях. Радиальная грузоподъемность у этих подшипников на 30-40 % больше, чем у радиальных однорядных. Их выполняют разъемными со съемным на­ружным кольцом и неразъемными.

Шариковые и роликовые упорные подшипники (см. рис. 16, и. к) предназначены для восприятия односторонних осевых нагрузок. Применя­ются при сравнительно невысоких угловых скоростях, главным образом на вертикальных валах. Упорные подшипники радиальную нагрузку не вос­принимают. При необходимости установки упорных подшипников в узлах, где действуют не только осевые, но и радиальные нагрузки, следует допол­нительно устанавливать радиальные подшипники.

В некоторых конструкциях, где приходится бороться за уменьшение радиальных габаритов, применяются т.н. «бескольцевые» подшипники, когда тела качения установлены непосредственно между валом и корпусом. Однако нетрудно догадаться, что такие конструкции требуют сложной, индивидуальной, а, следовательно, и дорогой сборки-разборки.

Достоинства подшипников качения:

низкое трение, низкий нагрев;

— высокий уровень стандартизации;

— экономия дорогих антифрикционных материалов.

Недостатки подшипников качения:

высокие контактные напряжения, и поэтому ограниченный срок службы;

высокие габариты (особенно радиальные) и вес;

— высокие требования к оптимизации выбора типоразмера;

— большая чувствительность к ударным нагрузкам вследствие большой жесткости конструкции;

— слабая виброзащита, более того, подшипники сами являются генераторами вибрации за счёт даже очень малой неизбежной разноразмерности тел качения.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector