33 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Катодная защита трубопроводов от коррозии: общее описание технологии и сфера ее применения

Содержание

Особенности катодной защиты трубопроводов от коррозии

Обеспечение защиты труб от коррозийного воздействия производится с помощью разных технологий. Одним из наиболее эффективных методик считается электрохимическая обработка, включающая в себя и катодную защиту. В большинстве случаев этот вариант используется комплексно, наряду с обработкой металлоконструкций составами-изоляторами.

Основные разновидности катодной защиты

Катодную защиту трубопроводов от коррозии разработали еще в девятнадцатом столетии. Эта технология впервые были использована в кораблестроительной отрасли — анодными протекторами обшивали корпус плавучего судна, что минимизировало коррозийные процессы медного сплава. Чуть позже эту технологию начали активно применять и в других сферах. Кроме того, катодная методика на настоящий момент считается самой эффективной технологией антикоррозионной защиты.

Существует два типа катодной защиты металлических сплавов:

  • первый вариант предполагает то, что к обрабатываемой конструкции подключается источник электротока, то есть сама металлическая деталь становится катодом, а анодами выступают внешние электроды;
  • второй способ — гальваника — обрабатываемая заготовка соприкасается с проекторной пластинкой из металлического сплава, который обладает электроотрицательным потенциалом. При этой технологии в качестве анода выступают оба металла. С течением времена проекторная пластика подвергается разрушению.

Самым распространенным сегодня считается первый вариант, так как он является более быстрым и простым. С помощью это технологии можно справиться с разными типами коррозии:

  • межкристальная;
  • потрескивание латуни из-за чрезмерного напряжения;
  • коррозия, обусловленная влиянием блуждающих электротоков;
  • питтинговая коррозия и т. д.

Следует отметить, что первая методика позволяет обрабатывать крупногабаритные металлические конструкции, а гальваническая химэлектрозащита предназначена лишь для небольших изделий.

Гальваническая технология очень популярна на территории США, в нашей же стране она почти не применяется, так как технология устройства трубопроводов в РФ не подразумевает обработку особой изоляцией, которая необходима для гальванической защиты.

Без такого покрытия повышается коррозия стали под влиянием грунтовых вод, что крайне актуально для осени и весны. В зимний период после оледенения воды процесс коррозии значительно затормаживается.

Описание технологии

Катодная защита от коррозии производится с помощью постоянного электротока, подаваемого на обрабатываемое изделие, и делает потенциал заготовки отрицательным. Для этой цели зачастую применяются выпрямители.

Объект, который подсоединен к источнику электротока, считается «минусом», то есть катодом, а подведенное заземление является анодом, то есть «плюсом». Главное условие — наличие хорошей электропроводной среды. Для подземных труб ею является грунт.

При реализации этой технологии между почвой (электропроводной средой) и обрабатываемым объектом должна обязательно поддерживаться разница потенциалов электротока. Величину этого показателя можно определить с применением вольтметра высокоомного типа.

Особенности эффективной работы

Коррозия зачастую является виновницей разгерметизации трубопроводов. В связи с повреждением структуры металла, на конструкции образуются трещины, каверны и разрывы. Эта проблема крайне актуальна для трубопроводов под землей, ведь они постоянно контактируют с грунтовыми водами.

Катодная методика в этой ситуации позволяет минимизировать процесс растворения и окисления металлического сплава посредством изменения исходного коррозийного потенциала.

Результаты практических испытаний говорят о том, что потенциал поляризации металлических сплавов с помощью катодной методики замедляет коррозию.

Для того чтобы добиться эффективной защиты, нужно с помощью постоянного электротока уменьшить катодный потенциал материала, который использовался для создания трубопровода. В этой ситуации быстрота корродирования металла не будет превышать десяти микрометров в год.

Кроме того, катодная защита — самое лучшее решение для защиты трубопровода под землей от влияния блуждающих электротоков. Блуждающие токи — это электрозаряд, проникающий в почву при работе громоотвода, движения электропоездов и т. д.

Для обеспечения антикоррозийной защиты могут применяться линии электропередач или портативные генераторы, функционирующие на дизельном топливе или газу.

Специальное оборудование

Для целей обеспечения защиты используются специальные станции. Это оборудование включает в себя несколько узлов:

  • источник электротока;
  • анод (заземление);
  • пункт измерения, контроля и управления;
  • соединительные провода и шнуры.

Станция анодной защиты позволяет обеспечить защиту сразу нескольким трубопроводам, которые находятся рядом друг с другом. Регулировка подаваемого электротока может быть автоматической или ручной.

В нашей стране особую популярность имеет установка Минерва-3000. Показателей мощности этой СКЗ достаточно для того, чтобы защитить от коррозии примерно 40 километров трубопровода под землей.

К достоинствам установки следует отнести:

  • высокие показатели мощности;
  • опция восстановления после произведенной перезагрузки;
  • герметичность соединений и узлов;
  • наличие цифровых систем контроля и переключения режима;
  • возможность удаленного управления.

Дистанционный контроль за оборудованием осуществляется посредством модулей GPRS, которые встроены в конструкцию.

Варианты катодной защиты трубопроводов – преимущества и недостатки способов

До сих пор при обустройстве протяжённых промышленных трубопроводов наиболее востребованным материалом изготовления труб является сталь. Обладая множеством замечательных свойств, таких как механическая прочность, способность функционировать при больших значениях внутренних давления и температуры и стойкость к сезонным изменениям погоды, сталь имеет и серьёзный недостаток: склонность к коррозии, приводящей к разрушению изделия и, соответственно, неработоспособности всей системы.

Один из способов защиты от этой угрозы – электрохимический, включающий катодную и анодную защиту трубопроводов; об особенностях и разновидностях катодной защиты будет рассказано ниже.

Определение электрохимической защиты

Электрохимическая защита трубопроводов от коррозии – процесс, осуществляемый при воздействии постоянного электрического поля на предохраняемый объект из металлов или сплавов. Поскольку обычно доступен для работы переменный ток, используются специальные выпрямители для преобразования его в постоянный.

В случае катодной защиты трубопроводов защищаемый объект путём подачи на него электромагнитного поля приобретает отрицательный потенциал, то есть делается катодом.

Соответственно, если ограждаемый от коррозии отрезок трубы становится «минусом», то заземление, подводящееся к нему, – «плюсом» (т.е. анодом).

Читать еще:  Ремонт сварочных инверторных аппаратов своими руками

Антикоррозионная защита по такой методике невозможна без присутствия электролитической, с хорошей проводимостью, среды. В случае обустройства трубопроводов под землёй её функцию выполняет грунт. Контакт же электродов обеспечивается путём применения хорошо проводящих электрический ток элементов из металлов и сплавов.

В ходе протекания процесса между средой-электролитом (в данном случае грунтом) и защищаемым от коррозии элементом возникает постоянная разница потенциалов, значение которой контролируется при помощи высоковольтных вольтметров.

Классификация методик электрохимической катодной защиты

Такой способ предупреждения коррозии был предложен в 20-х годах XIX века и поначалу использовался в судостроении: медные корпуса кораблей обшивались протекторами-анодами, значительно снижающими скорость корродирования металла.

После того, как была установлена эффективность новой технологии, изобретение стало активно применяться в других областях промышленности. Через некоторое время оно было признано одним из самых эффективных способов защиты металлов.

В настоящее время используется два основных типа катодной защиты трубопроводов от коррозии:

  1. Самый простой способ: к металлическому изделию, требующему предохранения от коррозии, подводится внешний источник электрического тока. В таком исполнении сама деталь приобретает отрицательный заряд и становится катодом, роль же анода выполняют инертные, не зависящие от конструкции, электроды.
  2. Гальванический метод. Нуждающаяся в защите деталь соприкасается с защитной (протекторной) пластиной, изготавливаемой из металлов с большими значениями отрицательного электрического потенциала: алюминия, магния, цинка и их сплавов. Анодами в этом случае становятся оба металлических элемента, а медленное электрохимическое разрушение пластины-протектора гарантирует поддержание в стальном изделии требуемого катодного тока. Через более или менее долгое время, в зависимости от параметров пластины, она растворяется полностью.

Характеристики первого метода

Этот способ ЭХЗ трубопроводов, в силу простоты, наиболее распространён. Применятся он для предохранения крупных конструкций и элементов, в частности, трубопроводов подземного и наземного типов.

Методика помогает противостоять:

  • питтинговой коррозии;
  • коррозии из-за присутствия в зоне расположения элемента блуждающих токов;
  • коррозии нержавеющей стали межкристального типа;
  • растрескиванию латунных элементов вследствие повышенного напряжения.

Характеристики второго метода

Эта технология предназначается, в отличие от первой, в том числе для защиты изделий небольших размеров. Методика наиболее популярна в США, в то время как в Российской Федерации используется редко. Причина в том, что для проведения гальванической электрохимическая защита трубопроводов необходимо наличие на изделии изоляционного покрытия, а в России магистральные трубопроводы таким образом не обрабатываются.

Особенности ЭХЗ трубопроводов

Главной причиной выхода трубопроводов из строя (частичной разгерметизации или полного разрушения отдельных элементов) является коррозия металла. В результате образования на поверхности изделия ржавчины на его поверхности появляются микроразрывы, раковины (каверны) и трещины, постепенно приводящие к выходу системы из строя. Особенно эта проблема актуальна для труб, пролегающих под землёй и всё время соприкасающихся с грунтовыми водами.

Принцип действия катодной защиты трубопроводов от коррозии предполагает создание разности электрических потенциалов и реализуется двумя вышеописанными способами.

После проведения измерений на местности было установлено, что необходимый потенциал, при котором замедляется любой коррозионный процесс, составляет –0,85 В; у находящихся же под слоем земли элементов трубопровода его естественное значение равно –0,55 В.

Чтобы существенно замедлить процессы разрушения материалов, нужно добиться снижения катодного потенциала защищаемой детали на 0,3 В. Если добиться этого, скорость коррозии стальных элементов не будет превышать значений 10 мкм/год.

Одну из самых серьёзных угроз металлическим изделиям представляют блуждающие токи, то есть электрические разряды, проникающие в грунт вследствие работы заземлений линий энергопередачи (ЛЭП), громоотводов или передвижения по рельсам поездов. Невозможно определить, в какое время и где они проявятся.

Разрушающее воздействие блуждающих токов на стальные элементы конструкций проявляется, когда эти детали обладают положительным электрическим потенциалом относительно электролитической среды (в случае трубопроводов – грунта). Катодная методика сообщает защищаемому изделию отрицательный потенциал, в результате чего опасность коррозии из-за этого фактора исключается.

Оптимальным способом обеспечения контура электрическим током является использование внешнего источника энергии: он гарантирует подачу напряжения, достаточного для «пробивания» удельного сопротивления грунта.

Обычно в роли такого источника выступают воздушные линии энергопередачи с мощностями 6 и 10 кВт. В случае отсутствия на участке пролегания трубопровода ЛЭП следует использовать генераторы мобильного типа, функционирующие на газе и дизельном топливе.

Что нужно для катодной электрохимической защиты

Для обеспечения снижения коррозии на участках пролегания трубопроводов используются особые приспособления, называемые станциями катодной защиты (СКЗ).

Эти станции включают в себя следующие элементы:

  • заземление, выступающее в роли анода;
  • генератор постоянного тока;
  • пункт контроля, измерений и управления процессом;
  • соединительные приспособления (провода и кабели).

Станции катодной защиты вполне эффективно выполняют основную функцию, при подключении к независимому генератору или ЛЭП защищая одновременно несколько расположенных поблизости участков трубопроводов.

Регулировать параметры тока можно как вручную (заменяя трансформаторные обмотки), так и в автоматизированном режиме (в случае, когда в контуре имеются тиристоры).

Наиболее совершенной среди применяемых на территории РФ станций катодной защиты признаётся «Минерва-3000» (проект СКЗ по заказу «Газпрома» был создан французскими инженерами). Одна такая станция позволяет обеспечить безопасность около 30 км пролегающего под землей трубопровода.

  • высокий уровень мощности;
  • возможность быстрого восстановления после возникновения перегрузок (не более 15 секунд);
  • оснащённость необходимыми для контроля рабочих режимов узлами цифровой регулировки системы;
  • абсолютно герметичные ответственные узлы;
  • возможность контролировать функционирование установки удалённо, при подключении специального оборудования.

Вторая наиболее популярная в России СКЗ – «АСКГ-ТМ» (адаптивная телемеханизированная станция катодной защиты). Мощность таких станций меньше, чем упомянутых выше (от 1 до 5 кВт), но их возможности автоматического контроля работы улучшены за счёт наличия в исходной комплектации телеметрического комплекса с дистанционным управлением.

Обе станции требуют источника напряжения мощностью 220 В, управляются с помощью модулей GPRS и характеризуются достаточно скромными габаритами — 500×400×900 мм при весе 50 кг. Срок эксплуатации СКЗ – от 20 лет.

Катодная защита от коррозии трубопроводов: оборудование, принцип работы

Средства защиты от коррозии позволяют продлить срок службы металлической конструкции, а также сохранить ее технико-физические свойства в процессе эксплуатации. Несмотря на разнообразие методов обеспечения противокоррозийного действия, полностью уберечь объекты от поражения ржавчиной удается лишь в редких случаях.

Эффективность такой защиты зависит не только от качества протекторной технологии, но и от условий ее применения. В частности, для сбережения металлической структуры трубопроводов свои лучшие свойства демонстрирует электрохимическая защита от коррозии, основанная на работе катодов. Предотвращение образования ржавчины на подобных коммуникациях, разумеется, не единственная сфера применения данной технологии, но по совокупности характеристик это направление можно рассматривать как наиболее актуальное для электрохимической протекции.

Общие сведения об электрохимической защите

Защита металлов от ржавчины посредством электрохимического воздействия основывается на зависимости величины электродного потенциала материала от скорости процесса коррозии. Металлические конструкции должны эксплуатироваться в том диапазоне потенциалов, где их анодное растворение будет ниже допустимого предела. Последний, к слову, определяется технической документацией по эксплуатации сооружения.

Читать еще:  Шуруповерт: особенности конструкции и способы ремонта своими руками

На практике электрохимическая защита от коррозии предполагает подключение к готовому изделию источника с постоянным током. Электрическое поле на поверхности и в структуре защищаемого объекта формирует поляризацию электродов, за счет которой управляется и процесс коррозийного поражения. В сущности, анодные зоны на металлической конструкции становятся катодными, что позволяет смещать негативные процессы, обеспечивая сохранность структуры целевого объекта.

Принцип работы катодной защиты

Существует катодная и анодная защита электрохимического типа. Наибольшую популярность все же получила первая концепция, которая и применяется для защиты трубопроводов. По общему принципу, при реализации данного метода к объекту подводится ток с отрицательным полюсом от внешнего источника. В частности, таким образом может защищаться труба стальная или медная, в результате чего будет происходить поляризация катодных участков с переходом их потенциалов в анодное состояние. В итоге коррозийная активность защищаемой конструкции будет сведена практически к нулю.

При этом и катодная защита может иметь разные варианты исполнения. Широко практикуется вышеописанная техника поляризации от внешнего источника, но эффективно действует и метод деаэрации электролита с уменьшением скорости катодных процессов, а также созданием протекторного барьера.

Уже не раз отмечалось, что принцип катодной защиты реализуется за счет внешнего источника тока. Собственно, в его работе и заключается главная функция антикоррозийной защиты. Выполняют эти задачи специальные станции, которые, как правило, входят в общую инфраструктуру технического обслуживания трубопроводов.

Станции катодной защиты от коррозии

Главная функция катодной станции заключается в стабильном обеспечении током целевого металлического объекта в соответствии с методом катодной поляризации. Используют такое оборудование в инфраструктуре подземных газо- и нефтепроводов, в трубах водоснабжения, тепловых сетях и т.д.

Существует множество разновидностей таких источников, при этом наиболее распространенное устройство катодной защиты предусматривает наличие в составе:

  • оборудования преобразователя тока;
  • провода для подводки к защищаемому объекту;
  • анодного заземлителя.

При этом существует разделение станций на инверторные и трансформаторные. Имеют место и другие классификации, но они ориентированы на сегментацию установок или по сферам применения, или же по техническим характеристикам и параметрам входных данных. Базовые принципы работы наиболее ярко иллюстрируют обозначенные два типа катодных станций.

Трансформаторные установки катодной защиты

Сразу следует отметить, что данный вид станций является устаревающим. На его смену как раз и приходят инверторные аналоги, которые имеют как плюсы, так и минусы. Так или иначе, трансформаторные модели применяются даже на новых пунктах обеспечения электрохимической защиты.

В качестве основы таких объектов используется низкочастотный трансформатор на 50 Гц и тиристорный преобразователь. Для системы управления тиристорами применяются простейшие устройства, среди которых фазоимпульсные регуляторы мощности. Более ответственный подход к решению задач управления предполагает использование контроллеров с широким функционалом.

Современная катодная защита от коррозии трубопроводов с таким оснащением позволяет регулировать параметры выходного тока, показатели напряжения, а также выравнивать защитные потенциалы. Что касается недостатков трансформаторного оборудования, то они сводятся к высокой степени пульсации тока на выходе при низком коэффициенте мощности. Объясняется этот изъян не синусоидой формой тока.

Решить проблему с пульсацией в определенной мере позволяет внедрение в систему низкочастотного дросселя, но его габариты соответствуют размерам самого трансформатора, что не всегда делает возможным такое дополнение.

Инверторная станция катодной защиты

Установки инверторного типа базируются на импульсных высокочастотных преобразователях. Одним из главных преимуществ от использования станций этого типа является высокий КПД, достигающий 95%. Для сравнения, у трансформаторных установок этот показатель в среднем достигает 80%.

Иногда на первый план выходят и другие достоинства. Например, небольшие габариты инверторных станций расширяют возможности для их применения на сложных участках. Есть и финансовые преимущества, которые подтверждает практика применения такого оборудования. Так, инверторная катодная защита от коррозии трубопроводов быстро окупается и требует минимальных вложений в техническое содержание. Впрочем, эти качества отчетливо заметны лишь при сравнении с трансформаторными установками, но уже сегодня появляются более эффективные новые средства обеспечения тока для трубопроводов.

Конструкции катодных станций

Такое оборудование представлено на рынке в разных корпусах, формах и габаритах. Конечно, распространена и практика индивидуального проектирования таких систем, что позволяет не только получить оптимальную для конкретных нужд конструкцию, но и обеспечить необходимые эксплуатационные параметры.

Строгий расчет характеристик станции позволяет в дальнейшем оптимизировать затраты на ее установку, транспортировку и хранение. К примеру, для небольших объектов вполне подойдет катодная защита от коррозии трубопроводов на инверторной основе массой в 10-15 кг и мощностью 1,2 кВт. Оборудование с такими характеристиками можно обслужить и легковым автомобилем, однако для масштабных проектов могут применяться и более массивные и тяжелые станции, требующие подключения грузовой техники, подъемного крана и бригад монтажников.

Защитный функционал

Особое внимание при разработке катодных станций уделяется защите самого оборудования. Для этого интегрируются системы, позволяющие предохранять станции от короткого замыкания и обрыва нагрузок. В первом случае используются специальные предохранители, позволяющие обрабатывать аварийные режимы работы установок.

Что касается скачков и обрывов напряжения, то станция катодной защиты вряд ли серьезно пострадает от них, но зато может возникнуть опасность поражения током. Например, если в обычном режиме оборудование эксплуатируется небольшим напряжением, то после обрыва скачок в показателях может довести до 120 В.

Другие виды электрохимической защиты

Помимо катодной защиты практикуются и технологии электрического дренажа, а также протекторные методы предотвращения коррозии. Наиболее перспективным направлением считается именно специальная протекция от образования коррозии. В данном случае также к целевому объекту подключаются активные элементы, обеспечивающие преобразование поверхности с катодами посредством тока. Например, труба стальная в составе газопровода может быть защищена цинковыми или алюминиевыми цилиндрами.

Заключение

Способы электрохимической защиты нельзя отнести к новым и, тем более, инновационным. Эффективность применения подобных методик в борьбе с процессами ржавления освоена давно. Однако, широкому распространению этого способа препятствует один серьезный недостаток. Дело в том, что катодная защита от коррозии трубопроводов неизбежно вырабатывает так называемые блуждающие токи. Они не опасны для целевой конструкции, но могут оказывать негативное воздействие на близкорасположенные объекты. В частности, блуждающий ток способствует развитию той же коррозии на металлической поверхности соседних труб.

ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ

Блог технической поддержки моих разработок

Главное меню

Катодная защита от коррозии. Принцип действия, основные понятия.

Больше 15 лет я разрабатываю станции катодной защиты. Требования к станциям четко формализованы. Есть определенные параметры, которые должны быть обеспечены. А знание теории защиты от коррозии совсем не обязательно. Гораздо важнее знание электроники, программирования, принципов конструирования электронной аппаратуры.

Читать еще:  Выбираем садовый измельчитель: бензиновый или электропривод, что подойдёт для травы и веток

Создав этот сайт, я не сомневался, что когда-нибудь там появится раздел катодная защита. В нем я собираюсь писать о том, что я хорошо знаю, о станциях катодной защиты. Но как-то не поднимается рука писать о станциях, не рассказав, хотя бы коротко, о теории электрохимической защиты. Постараюсь рассказать о таком сложном понятии как можно проще, для не профессионалов.

История развития катодной защиты настолько занимательная глава, что я изложил ее в отдельной статье. Она не имеет практического значения. Просто интересно.

Для того чтобы защитится от коррозии, надо понять, что такое коррозия, природу ее происхождения.

Электрохимическая коррозия.

Коррозию можно определить как реакцию материала с окружающей средой, вызывающую в нем ощутимые изменения.

Изменения – понятие расплывчатое. Поэтому существует понятие коррозионного повреждения, основными признаками которого является нарушение функционирования объекта, например разрушение все той же металлической трубы. Не все реакции ведут к повреждению. Если труба станет коричневой или зеленой, но не будет протекать, это не будет считаться коррозионным повреждением.

Материалы и окружающая среда бывают разными. Бывают разными и реакции между ними. В основе коррозии могут лежать чисто химические реакции. Но вряд ли кого-либо заинтересует коррозия висмута в растворе дигидрофосфата натрия. Гораздо важнее знать о коррозии железной трубы, закопанной в землю.

Так вот, практический интерес имеет коррозия металлических материалов в водных средах, т.е. электрохимическая коррозия. В основе ее лежат реакции, имеющие электрохимическую природу.

В детстве я был любознательным мальчиком. Я проводил опыты по гальваническому осаждению меди на железные предметы, чем удивлял своих одноклассников. Но еще больше я поразил их, когда принес в школу лезвие от безопасной бритвы с вырезанной на нем сквозной надписью. Эффект я усилил сказав, что сделал это лазером. Конечно, я просто покрыл лезвие лаком, иголкой выцарапал надпись, опустил в жестяную банку с раствором соли, подключил электрический ток и немного подождал. Теперь я понимаю, что мои детские опыты были иллюстрацией того, как происходит электрохимическая коррозия и как от нее защититься. (Рассказ о моих детских опытах не художественный вымысел, а чистая правда.)

Итак, объекты процесса электрохимической коррозии:

  • среда – раствор электролита (почва всегда влажная, поэтому это тоже раствор электролита);
  • граница раздела среда-металл;
  • металл.

Все перечисленные объекты способны проводить электрический ток, обладают хорошей электропроводностью. В растворе электролита содержатся анионы и катионы. Они создают электрический ток. Ток протекает через участок металл – раствор электролита. За счет этого тока на границе раздела происходит электрохимическая реакция, на которую могут влиять еще и внешние токи. Влиять они могут по-разному, как усиливать коррозию, так и замедлять ее.

За счет тока на границе образуется разность потенциалов. Ее невозможно измерить. Поэтому измеряют потенциал специального электрода сравнения. Он является своеобразным суммарным показателем электрохимической реакции.

Физическое объяснение электрохимической коррозии выглядит так. В металле присутствуют ионы железа (положительно заряженные) и электроны (с отрицательным зарядом). Оба компонента реагируют с раствором электролита.

  • При положительном токе металл переходит в раствор, что связано с прохождения ионов и вызывает потерю массы металла (растворение металла).
  • При отрицательном токе в раствор проходят электроны, и происходит это без потери массы металла.

В первом случае происходит анодная, а во втором случае — катодная электрохимические реакции. Анодная реакция (растворение металла) вызывает коррозию. Катодная реакция является процессом обратным коррозии и используется в гальванотехнике для нанесения гальванических покрытий.

Принцип действия катодной защиты.

Понятно, что для защиты объекта от коррозии необходимо вызвать катодную реакцию и не допустить анодную. Сделать это можно, если искусственно создать отрицательный потенциал на защищаемом объекте.

Для этого необходимо разместить в среде (почве) анодные электроды и подключить внешний источник тока: минус к объекту защиты, а плюс – к анодным электродам. Ток пойдет по цепи анодный электрод – почвенный электролит – объект защиты от коррозии.

С точки зрения гальванических процессов металлический объект будет катодом, а дополнительный электрод – анодом.

Таким образом, коррозия объекта прекратится. Разрушаться будет только анодный электрод. Он называются анодным заземлением. Анодные электроды делают из инертного материала и периодически меняют.

Станция катодной защиты.

Ток для катодной защиты вырабатывает специальное устройство — станция катодной защиты.

По сути это источник вторичного электропитания, специализированный блок питания. Т.е. станция подключается к питающей сети (как правило

220 В) и вырабатывает электрический ток с заданными параметрами.

Вот пример схемы системы электрохимической защиты подземного газопровода с помощью станции катодной защиты ИСТ-1000.

Станция катодной защиты установлена на поверхности земли, вблизи от газопровода. Т.к. станция эксплуатируется на открытом воздухе, то она должна иметь исполнение IP34 и выше. В этом примере используется современная станция, с контроллером GSM телеметрии и функцией стабилизации потенциала.

В принципе, станции катодной защиты бывают очень разными. Они могут быть трансформаторными или инверторными. Могут быть источниками тока, напряжения, иметь различные режимы стабилизации, различные функциональные возможности.

Станции прошлых лет это громадные трансформаторы с тиристорными регуляторами. Современные станции это инверторные преобразователи с микропроцессорным управлением и GSM телемеханикой.

Выходная мощность устройств катодной защиты, как правило, находится в диапазоне 1 – 3 кВт, но может доходить и до 10 кВт. Станциям катодной защиты и их параметрам посвящена отдельная статья.

Нагрузкой для устройства катодной защиты является электрическая цепь: анодное заземление – почва – изоляция металлического объекта. Поэтому требования к выходным энергетическим параметрам станций, прежде всего, определяют:

  • состояние анодного заземления (сопротивление анод-почва);
  • почва (сопротивление грунта);
  • состояние изоляции объекта защиты от коррозии (сопротивление изоляции объекта).

Все параметры станции определяются при создании проекта катодной защиты:

  • рассчитываются параметры трубопровода;
  • определяется величина защитного потенциала;
  • рассчитывается сила защитного тока;
  • определяется длина защитной зоны;
  • выбирается место установки станции;
  • определяется тип, место расположения и параметры анодного заземления;
  • окончательно рассчитываются параметры станции катодной защиты.

Применение.

Катодная защита от коррозии получила широкое распространение для электрохимической защиты:

  • подземных газопроводов и нефтепроводов;
  • трубопроводов теплосетей и водоснабжения;
  • оболочек электрических кабелей;
  • крупных металлических объектов, резервуаров;
  • подземных сооружений;
  • морских судов от коррозии в воде;
  • стальной арматуры в железобетонных сваях, в фундаментах.

Применение катодной защиты обязательно для газопроводов низкого и среднего давления, магистральных газопроводов, нефтепроводов.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector