3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Плазменная сварка: назначение и описание, преимущества и разновидности, рекомендации

Содержание

Особенности сварки на основе плазмы

Современная промышленность предлагает своим потребителям множество методик сварки. Плазменная технология считается одним из наиболее продвинутых вариантов.

Удобная резка, расплавление и скрепление разных конструкций и деталей из металлических сплавов с применением специализированного оборудования на базе использования плазмы существенно упрощают монтажные мероприятия. Кроме того, плазменная методика является крайне безопасной. Конечно, это возможно лишь при том условии, если исполнитель будет придерживаться требований безопасности и основных правил работы.

Назначение

Интенсивное внедрение в производство большого количества «продвинутых» сплавов и металлов таких как, к примеру, нержавейка, комбинации цветных металлов и другие вариации буквально вынудило специалистов отыскать новые сварочные технологии. Потому что зачастую указанные материалы и их комбинации плохо поддаются обработке классической газовой и иными разновидностями сварки.

Так была разработана на применении определенных технологических характеристик плазмы сварка, ставшая очень распространенной среди ремонтников и строителей.

При том что она обладает массой сходств со сваркой аргонного типа, плазменная технология характеризуется гораздо большими температурными показателями. В частности, сварочная дуга нередко нагревается до двадцати тысяч градусов по шкале Цельсия.

Именно этот параметр при плазменной сварке позволяет скрепить друг с другом детали, неподвластные обыкновенной сварочной дуге, температура которой не превышает пяти тысяч градусов.

Принцип работы основывается на расплавлении части металлического элемента в итоге воздействия на поверхность ионизированного газа, проводящего ток. Газовый поток ионизируется при нагревании дуги, которая выпускается плазмотроном. Степень ионизации увеличивается по мере увеличения температурных показателей газа.

Дуга плазмы, обладающая очень высокой мощностью и температурой, получается посредством сжатия обыкновенной дуги с помощью плазмообразующего газа. Как правило, для этого применяется аргон. В некоторых ситуациях к нему могут добавлять водород и гелий.

При ионизации заряженные частицы, присутствующие в газе, усиливают тепло, выделяемое дугой. Помимо этого, плазменная дуга может в разы увеличить давление на металлические поверхности благодаря уменьшению собственного диаметра.

Главные преимущества

Сравнивая с традиционными видами сварки, можно обозначить несколько основных достоинств плазменной технологии:

  1. Возможность работать с любым металлическим сплавом;
  2. Возможность быстро обрабатывать металлические изделия толщиной в 50−200 миллиметров;
  3. Несущественные затраты благодаря отсутствию необходимости в применении пропан-бутана и ацетилена;
  4. Швы при плазменной сварке делаются более аккуратными и ровными;
  5. Свариваемый материал не подвергается деформации;
  6. Использование сварки плазменного типа является очень безопасным, потому что при такой работе не используются баллоны с газом.

Разновидности сваривания

Существует три разновидности плазменной сварки, которые определяются силой используемого электротока:

  1. Микроплазменная (при токе от 0,1 до 25 А);
  2. На средних электротоках (от 50 до 150 А);
  3. На больших электротоках (более 150 А).

Микроплазменная сварка.

Микроплазменный тип является самым распространенным. При такой обработке формируется специальная «дежурная» дуга, загорающаяся между электродом и водоохладительным соплом.

Главная дуга возникает после подведения плазмотрона к металлическому изделию, которое нужно обработать. Газ, из которого формируется плазма, подается посредством плазмотронного сопла.

Эта разновидность сварки очень эффективна при обработке тонких металлических изделий. Такое сварочное оборудование характеризуется очень широкой сферой применения: производство тонкостенных труб и сосудов, изготовление предметов ювелирного дела, сварка листов фольги, крепление мембран к различного рода конструкциям и т. д.

Сварка на средних электротоках.

Эта технология базируется на использовании свойств раскаленных газов, подвергаемых ионизации. Данная методика похожа параметрами на аргоновую сварку с применением электрода из вольфрама. Но этот способ имеет дугу большей мощности, нежели аргоновой. Кроме того, он может оказывать воздействие на ограниченную плоскость, то есть является более продуктивным. Это обусловлено не только высокой мощностью, но и высоким давлением плазменной дуги.

Технология на больших элеткротоках.

Отличается еще большими показателями мощности. Заготовка при этом полностью проплавливается. На нее оказывается настолько существенное воздействие, что даже в сварочной ванночке появляется сквозная дыра. По сути, вся работа состоит из разрезания конструкции и ее заваривания.

Эта разновидность сварки используется для обработки изделий из медных деталей, титана, низкоуглеродистых и легированных стальных сплавов и иных материалов. Применение этой современной технологии позволяет более эффективно, качественно и экономно сваривать металлоконструкции.

Рекомендации для работы

Технология сварки на основе плазмы имеет массу отличий от иных вариантов. Руководствуясь данными особенностями, производится подготовка материала и оборудования для работы.

Чтобы избежать проблем, электрод нужно затачивать под углом от 25 до 30 градусов. Конус, который при этом образуется, должен по длине составлять примерно пяти-шести размерам диаметра. Острие желательно немного притупить.

В процессе обработки листового металла нужно внимательно контролировать появление зазоров. Их размер не должен превышать полутора миллиметров. Заготовки рекомендуется крепить так, чтобы сварные стыки полностью друг с другом совпадали.

При работе следует пользоваться постоянным током. Защитный газ нужно отправлять к области сварки примерно за десять-двадцать секунд до возбуждения дуги. В течение всей процедуры необходимо следить за тем, чтобы у дуги не было никаких обрывов. При наличии обрыва нужно отыскать точку, в которой это случилось, и надежно ее защитить.

Соблюдение названных выше рекомендаций помогут сделать работу безопасной и эффективной.

От положительных ионов – к отрицательным: сварка в четвёртом агрегатном состоянии, преимущества и область применения плазмы

Плазма – ионизирующийся газ, минимальная температура самопроизвольной ионизации – 5 500 ̊C, при плазменной сварке нагрев происходит до 50 000 ̊C. Анодом выступает электрод, катодом – сопло. Дуга возникает между электродом и соплом, выдувается газом, после чего образуется струя плазмы. Технология чаще применяется для резки металла, реже – для сварки.

Государственный стандарт, задающий уровень качества и параметры процесса

Процессы плазменной сварки регламентируются общим для всех видов ГОСТ 2601-84, введённым в действие в 1985 г. в СССР. Изменён в 1992, переиздан в 1996 году. Государственный стандарт определяет процесс с использованием плазмы, как «сварка плавлением, при которой нагрев производится сжатой дугой».

Читать еще:  Стойка для дрели своими руками: виды стоек и методы изготовления держателя

Национальный стандарт Российской Федерации ГОСТ Р ИСО 5817-2009 устанавливает уровни качества сварных соединений. Там указаны и допустимые отклонения в качестве сварки стали, никеля, титана и их сплавов.

Классификация

По ГОСТ 19521-74 «Сварка металлов. Классификация», принятому в СССР в 1975 году и позднее продлённом, плазменно-лучевая сварка отнесена к классу термических. По направлению движений плазменной струи подразделяется на четыре подвида:

  1. Без колебаний.
  2. С поперечными колебаниями.
  3. С продольными колебаниями.
  4. Со сложными колебаниями.

Технология плазменной сварки и классификация дуги по видам действия

По источнику нагрева различают сварку плазменной дугой и струёй. В первом случае дуга зажигается между деталью и неплавящимся электродом, также её называют дугой прямого действия. Во втором – между наконечником плазмотрона и неплавящимся электродом, – это плазменная дуга косвенного действия.

Горелка (плазмотрон) состоит из сопла, где размещён вольфрамовый электрод. Туда подаются защитный газ, охлаждающая, горячая и холодная жидкости. В плазмотроне происходит сжатие дуги, после чего возрастает её мощность. Одновременно с этим подают газ, который ионизируется, нагревается и расширяется в объёме многократно. В передней части сварочной ванны материал расплавляется и перемещается под давлением плазмы вдоль стенок, образуя шов.

Дуговую плазменную струю используют для соединения и резки как электропроводящих материалов, так и диэлектриков – стекла и керамики. Выглядит струя как конус, верхушкой обращённый к расплавляемой поверхности. Тепловая эффективность зависит от силы тока, напряжения, расстояния от сопла до детали и скорости перемещения горелки.

Струёй сваривают как снизу в горизонтальном, так и фронтально в вертикальном положении изделия. Плазмообразующим газом выступают аргон или гелий, одновременно являющиеся защитой от кислорода.

Классификация по мощности тока

В зависимости от силы тока различают три вида:

  1. Микроплазменная сварка, до 25 ампер. Получила распространение, благодаря свойству нагревать небольшие участки металла. При такой величине изделие не прожигается насквозь.
  2. На среднем токе, до 150 ампер. Позволяет варить с высокой точностью. Происходит глубокое, но не широкое расплавление материала.
  3. На большом токе, свыше 150 ампер. Такая мощность образует широкую дугу, которая проплавляет деталь насквозь. Фактически деталь разрезают, а после этого сваривают. Используют для соединения особо прочных металлов: титана, высоколегированных сталей, сплавов с большим содержанием алюминия.

Оборудование и приспособления

В комплект входят:

  • источник питания с вертикальной вольтамперной характеристикой;
  • плазмотрон (горелка);
  • система подачи газа и охлаждающей жидкости;
  • устройство для фиксации детали.

Для безопасной работы необходимо устройство приточно-вытяжной вентиляции. Диапазон мощности установок от 20 до 250 ампер, работают от постоянного тока.

Цена инверторов – от 15 до 500 тысяч рублей. В ценовом сегменте от 300 до 500 тысяч – мощные и многофункциональные установки, которыми режут, сваривают и паяют металл.

Процедура плазменной сварки

При организации работ обязательно соблюдение требований безопасности: проходы между сварочными аппаратами – не менее 1,5 метра, между установкой и стеной – не менее 1 метра. Обязательно выполнение требований правил пожарной безопасности и техники безопасности – защита органов зрения, работа в спецодежде.

Алгоритм действий сварщика состоит:

  • из предварительных работ – подготовки оборудования, обезжиривания, зачистки и закрепления детали;
  • из выбора режима сварки – в зависимости от толщины металла определяют силу тока, напряжение дуги, скорость сварки, расход защитного и плазмообразующего газа;
  • из процесса сварки.

Зазор между соединяемыми плоскостями, если сваривают без присадочной проволоки, устанавливают 0,15 от толщины металла. Если с проволокой, то расстояние между кромками – половина толщины листов.

Диаметр сопла устанавливают в зависимости от силы тока. Перед возбуждением дуги в зону сварки 10-15 секунд подают защитный газ. Включают постоянный ток, зажигают дугу и приступают к плавлению. Рекомендуемое расстояние от сопла до изделия – не более 10 мм. Дуга по мере возможности прерываться не должна, горелка перемещаться стабильно и плавно, колебательными движениями амплитудой 2-3 мм. Не допускается перегрев детали.

Преимущества и недостатки

Список преимуществ этой технологии длинней перечня недостатков:

  • стабильность горения, обеспечивающая качество сварных швов;
  • сварка без разделки кромок и применения присадочных материалов металла толщиной до 10 мм и толщиной от 0,01 до 0,8 мм на низком токе от 0,1 до 25 ампер;
  • напыление любых по плавкости материалов введением в дугу присадочных добавок;
  • ограничение зоны перегрева, накаливания;
  • низкий расход защитных газов, меньшие термические деформации сравнительно с другими видами сварки;
  • резка любых материалов при увеличении силы тока и расхода газа;
  • сварка металлов и неметаллов.
  • воздействие на персонал электромагнитного излучения инфракрасного и ультрафиолетового диапазона;
  • высокие требования к квалификации работника;
  • некомфортный уровень шума в ходе работ;
  • выделение аэрозольных паров;
  • ионизация воздуха в зоне установки.

Интересное видео: аппарат для плазменной сварки и резки, сделанный своими руками

Нюансы плазменной сварки и область ее применения

Из большого многообразия методов обработки металлов – плазменная сварка является наиболее распространенной.

В первую очередь это обусловлено тем, что в современной промышленности довольно часто используется нержавеющая сталь, цветные металлы и их сплавы, для которых применение других видов обработки малоэффективно.

Современное оборудование обеспечивает высокую продуктивность в сравнении с другими технологиями.

Достоинства и недостатки плазменной сварки

Итак, что такое плазменная сварка? Это процесс локального расплавления металлического изделия плазменным потоком. Он формируется высокоскоростной дугой, температурой 5000-30000°С.

Газовый поток, проходящий через дугу, нагревается и ионизируется, за счет чего он превращается в плазменный поток и выдувается соплом плазматрона для сварки. В этом и заключается сущность ее работы.

Для того, чтобы данный аппарат функционировал, необходимо лишь электричество и поток сжатого газа. Если используется компрессор, тогда достаточно только электричества.

Для работы необходимо менять лишь плазмотрон и электроды. На этом обслуживание оборудования такого типа и заканчивается. В то время как для других типов сварок необходимо выполнять большее количество работ по уходу. Кроме того они являются более взрывоопасными.

К основным достоинствам данных аппаратов можно отнести:

  • высокую скорость резки металлов;
  • возможность использования аппарата практически со всеми металлами и сплавами;
  • высокая точность и качество шва;
  • более низкая стоимость работ по сравнению с другими методами;
  • отсутствие деформаций металла при обработке плазмой;
  • высокий уровень безопасности выполнения работ.

Разновидности

Сварка плазмой разделяется на несколько видов, в зависимости от силы тока:

  • микроплазменная;
  • на средних токах;
  • на больших токах.

Чаще всего используется именно первый тип. Дело в том, что дуга может гореть при достаточно низких токах, если используются вольфрамовые электроды диаметром до двух миллиметров. Это возможно за счет высокой степени электродуговой ионизации газа.

Читать еще:  Какие бывают краги сварщика, сколько стоят и как правильно выбрать перчатки для сварки

Схема микроплазменной сварки представлена ниже.

Данный вариант технологии наиболее эффективен для соединения тонких деталей толщиной до полутора миллиметров. При этом диаметр дуги не превышает 2 мм. Это позволяет сфокусировать тепло в достаточно маленькой области и не нагревать соседние участки.

Основным газом в данном методе является аргон. Тем не менее в зависимости от типа изделия, в него могут добавляться различные примеси, которые способствуют увеличению эффективности процесса.

Приборы для микроплазменной сварки позволяют работать в нескольких режимах:

  • непрерывный;
  • импульсный;
  • непрерывный обратной полярности.

Плазменная сварка на средних токах во многом схожа с аргонодуговой. Однако первая обладает более высокими температурами, в то же время область нагрева существенно меньше. Это обуславливает ее высокую продуктивность.

Плазменная сварка позволяет проплавлять материал более глубоко, при этом ширина шва получается меньшей, чем в аргонодуговой.

Плазменная сварка на больших токах оказывает сильное силовое действие на материал. Она полностью проплавляет металл. В результате в ванне формируется отверстие, то есть детали сначала как бы разрезаются, а затем сплавляются заново.

Характеристики

Принцип работы плазменной сварки дает понять, что ее лучше всего использовать для тонких материалов, нержавеющей стали, цветных металлов и сплавов на их основе. Стоит сразу отметить, что во многих случаях использование других технологий, аргонодуговую сварку не представляется возможным.

В то же время в металлургии и других областях промышленности необходимо выполнять работы именно с такими изделиями.

К основным характеристикам дуги микроплазменной сварки относятся:

  • цилиндрическая форма;
  • концентрация энергии в небольшой области;
  • маленький угол расхождения потока;
  • невосприимчивость к изменению расстояния между плазмотроном и изделием;
  • высокая безопасность зажигания.

Все перечисленные выше характеристики являются одновременно и достоинствами метода. Например, цилиндрическая форма и возможность увеличения длины позволяет осуществлять сварочные работы даже в самых труднодоступных местах.

Также особенности технологии упрощают проведение сварки при наличии колебаний изделий, за счет нечувствительности к изменению расстояния.

Устройство и принцип работы

Плазменная сварка характеризуется следующим принципом работы: она основана на формировании дуги посредством осциллятора. Приборы функционируют на токах прямой полярности, которые и питают дугу. Она, в свою очередь, образует плазму.

С использованием данной дуги можно осуществлять резку или соединение любых типов металлов и сплавов во всех пространственных положениях.

Плазма формируется из газов, в качестве которых используют аргон или гелий. Они же выполняют и защитные функции. Это исключает косвенное влияние оксида на изделие при плазменной сварке.

Метод характеризуется незначительной чувствительностью к изменению длины дуги. При этом возможно соединение деталей толщиной более пятнадцати миллиметров без скоса кромок.

Это становится возможным благодаря сквозному прорезанию детали. В результате поток может выходить и на обратную сторону изделия. Само же соединение состоит из двух процессов: разрезание и последующая заварка.

Технология сварки

Специфика метода плазменно-дуговой технологии сварки состоит в том, что в область соединения подается плазма из специальной горелки – плазмотрона. В некоторых случаях, если необходимо, может быть использован аргон или гелий для создания инертной среды в области стыка деталей.

Вся энергия концентрируется в плазменной струе. За счет этого нагрев не распространяется по всей области изделия, а фокусируется только возле соединения. При этом температура на таком участке может составлять 10000-15000°С. Однако за счет быстрого отвода тепла металлом, она снижается до температуры плавления в зоне стыка.

Если во время данной процедуры соединение защитить инертным газом, то можно получить высококачественный шов, который не потребует дополнительной ручной обработки.

Корпус горелки выполняется из стали, анод – из меди. Последний охлаждается водой. Дуга питается газом, подающимся под большим давлением в полость между анодом и катодом.

В то же время важно иметь в виду, что аргон не ионизируется. Он быстро улетучивается, смешиваясь с воздухом. Чтобы он надежно выполнял свои защитные функции, необходимо придерживаться определенного расстояния между горелкой и деталью.

Поскольку метод обеспечивает высокий нагрев только в области стыка, это может привести и к нежелательным последствиям. Иногда приходится изделие предварительно прогревать или использовать несколько горелок, чтобы избежать резкого перепада температур по поверхности материала.

При использовании микроплазменной сварки удается получать качественные швы на тонких материалах. Реализация данной технологии возможна даже без использования присадочной проволоки.

Используемое оборудование

Установки для плазменной сварки широко применяются не только на крупном производстве, но и в бытовых условиях. При этом стоит отметить, что спрос на данном оборудовании постоянно растет, что лишний раз подтверждает его востребованность.

Все оборудование, предназначенное для выполнения данной работы, можно разделить по следующим особенностям:

  • тип воздействия;
  • способ стабилизации дуги;
  • сила тока.

При этом стоит отметить, что не стоит забывать и о других технологиях. Так, для сваривания деталей в серьезных отраслях, например, в авиастроении и аэрокосмической сферах, широко используется аргонодуговая сварка.

Плазменная, в свою очередь, чаще всего применяется для резки металлов, так как она позволяет осуществлять данный процесс с высокой скоростью.

Особенно она становится незаменимой при обработке сплавов с минимальным последующим короблением и развитием напряжений, а также деформаций.

Плазменная технология сварки является единственно возможным и доступным методом обработки некоторых металлов и сплавов. Особенно это относится к нержавеющим сталям, меди, латуни и т.д. Данный метод позволяет получать качественные, надежные и тонкие швы, а также осуществлять резку с высокой эффективностью.

Отдельное применение она нашла в соединении тонколистового металла без использования присадочной проволоки. Кроме того, такой тип сварки обеспечивает локальный нагрев лишь в области стыка, что может быть очень удобным при решении многих задач.

Виды и особенности плазменной сварки

Плазменная сварка является достаточно молодым методом соединения деталей. Несмотря на то, что он появился относительно недавно, уже набрал большую популярность за счет своих преимуществ и возможностей. Рассмотрим более подробно, что такое плазменная сварка, в чем она заключается и чем отличается от других видов сварок.

Сущность плазменной сварки

Плазмой называется состояние газа, в которое оно переходит под воздействием электрической дуги. Образуется она в специальном наконечнике, который называется плазмотрон (это как горелка в газовой сварке). Плавление плазмой – это такая техника, при которой для образования плазмы применяются горелка, в которой находится вольфрамовый электрод, сопла плазмы и труб подачи газа и водяного охлаждения. Данный вид незаменим для обработки изделий из металла высокой прочности и толщины (до 9 мм). Он немного схож с методикой дуговой сварки, но в отличие от электрода, который обеспечивает нагрев до 5-7 тысяч градусов, воздействует на изделие сверхвысокой температурой – до 30 тысяч градусов. От этого данный способ часто называют «плазменно-дуговая сварка». Выполнять работы таким аппаратом можно в любом пространственном положении изделия.

Читать еще:  Фиксаторы и пластиковые подставки для арматуры

Плазменная сварка металла, благодаря высокой температуре воздействия на изделие позволяет обрабатывать широкий спектр металлов – бронза, титан, нержавейка, углеродистая сталь, латунь, чугун, алюминий. Такой способ применяется в разных отраслях производств – приборостроение, машиностроение, пищевая промышленность, изготовление медицинского оборудования, ювелирное дело, химическое производство и многие другие. Плазменная сварка и резка металлов необходима и незаменима практически в каждом производстве.

Плазменная сварка и резка металлов бывает двух видов:

  1. Плавление металла дугой, которая возникает между изделием и неплавящимся электродом
  2. Сварка плазменной струей, которая образуется благодаря дуге горит между наконечником плазмотрона и неплавящимся электродом.

В качестве материалов для образования плазмы чаще всего применяется воздух, кислород, аргон и азот. Величина тока в плазме может быть разной, и различают три подвида:

  1. Микроплазменная сварка, которая реализуется на малом токе до 25 А
  2. Работа на средних токах – до 150А
  3. На больших токах, свыше 150А.

Говоря простыми словами, суть данного способа состоит в ионизации рабочего газа, который под давлением переходит в состояние плазмы и обеспечивает высокую температуру, используемую для расплавления металлов для резки или соединения.

Технология плазменной сварки делится на две разновидности:

  • плазменная сварка прямого действия;
  • плазменная сварка косвенного действия.

Плазменная сварка прямого действия

Это самый распространенный вид соединения металлов в данной технике исполнения швов. Он реализуется за счет электрической дуги, которая возбуждается между электродом и рабочим изделием.

Плазменная сварка алюминия должна проводиться крайне осторожно, так как этот плавиться при температуре 660,3 градуса. Важно контролировать весь процесс, чтобы не допустить пропал. В инструкции к аппаратам есть таблица, в которой указана рекомендованная сила тока для каждого вида металла. Например, плазменная сварка нержавейки проводится на среднем токе, а стали – на высоком.

В дуге прямого действия изначально возбуждается дуга на малых токах, между соплом и заготовкой, после касания плазмой свариваемого изделия возбуждается основная дуга прямого действия. Питание дуги может выполняться переменным и постоянным током прямой полярности, а ее возбуждение осуществляется осциллятором.

Плазменная сварка косвенного действия

В данном случае плазма образуется похожим способом, как и в плазменной сварке прямого действия. Отличие состоит в том, источник питания подключен к электроду и соплу, в результате чего образуется дуга между ними, и как следствие, на выходе из горелки — плазменная струя. Скорость выхода потока плазмы контролируется давлением газа. Основной секрет кроется в том, что газ, переходя в состояние плазмы увеличивает свой объем в 50 раз, за счет чего буквально вылетает из аппарата струей. Энергия расширяющегося газа совместно с тепловой энергией, сообщаемой струе газа, делает плазму мощным источником энергии.

Этот метод не так широко применяется, как первый, хотя имеет достаточное количество преимуществ. Во-первых, он обеспечивает бесперебойную работу даже при микроплазменной сварке (на малых токах). Во-вторых, он позволяет экономить газ (который стоит немало). В-третьих, за счет высокого давления практически нет разбрызгивания. Таким способом можно и варить и резать металл, но для резки не потребуется инертный газ, так как его функция – защищать сварочную ванну, а при разрезании металла она не образуется.

В завершение можно отметить, что устройство горелки прямого и косвенного метода сильно не отличаются. На картинке слева указана технология образования плазменной струи. Процесс происходит следующим образом: вольфрамовый электрод 2 подключен к отрицательному заряду, а сопло 4 к положительному. За счет этого дуга образуется между соплом и электродом,что характерно при косвенном методе.

На картинке справа, при прямом методе, дуга образуется между негативно-заряженным электродом и рабочей деталью, с положительным зарядом. Для поджога и возбуждения дуги используется временно подающийся ток на сопло, который после возбуждения дуги отключается.

Аппарат для работы

Аппарат воздушно плазменной сварки представляет собой небольшое техническое оборудование, весом не более 9-10 килограмм. Принцип работы его следующий: внутри находятся схемы управления, выпрямитель тока и трансформатор. Для работы к нему подключается установка с рабочими газами в баллонах – для образования плазмы и инертный газ, необходимый для защиты сварочного шва от окисления. На выходе подключается горелка с газами отдельно для резки. В связи с тем, что данный способ образует слишком высокий температурный режим, в горелке есть специальный отсек для охлаждающей жидкости. Данный аппарат по внешним признаком похож на инвертор. В продаже представлено множество моделей с различными функциями. Если говорить о самом простом, он самый компактный (около 5 кг) с минимальным количеством настроек, в которых разберется не то что новичок, а даже ребенок.

Модели, которые в цене дороже, имеют дополнительные настройки и функции, которые кроме резки и сварки могут выполнять пайку, воронение, оксидирование и закалку металла. Самыми простыми изделия считаются с минимально мощностью до 12А. Их стоимость колеблется в пределах 30 тысяч русских рублей. Оборудование на класс выше и мощнее, до 150А стоят от 40 и до 150 тысяч, зависимо от производителя и дополнительных функций. Самые дорогие модели имеют мощность от 150А, а их стоимость может даже превышать миллион рублей. Для профессионалов, которые постоянно занимаются сплавлением, рекомендуется приобретать качественное и дорогое оборудование. Заплатив один раз можно получить многофункциональное устройство, с помощью которого можно выполнять всевозможные процедуры по металлообработке.

Преимущества и недостатки

Плазменная сварка прямого действия и косвенного имеет свои преимущества и недостатки, как и другие виды сварки. Основными плюсами, что делают этот метод незаменимым для использования во многих промышленных отраслях, являются следующие:

  • высокий коэффициент полезного действия и высокая скорость выполнения работ;
  • высококачественная резка металла оставляет гладкие кромки и не требует дополнительной их обработки;
  • возможность варить и резать изделия, толщиной почти в сантиметр;
  • при работе нет шлаков и отходов;
  • контроль глубины провара металла, что позволяет избежать пропалов и деформации;
  • простота в использовании аппарата.

Кроме положительных моментов, можно отметить несколько недостатков:

  • дороговизна оборудования и высокая стоимость работ;
  • в сфере профессионального использования высокие требования к мастеру;
  • необходимость постоянного контроля над охлаждением, из-за высокой рабочей температуры.

В принципе, все эти минусы, можно превратить в плюсы, если посмотреть на это с другой стороны. Профессиональный мастер, имеющий качественное оборудование может работать в любой сфере и при этом зарабатывать хорошие деньги.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector