18 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Зубчатые передачи: виды, материалы для изготовления, способы обработки и расчёты зацеплений

Виды и принципы работы зубчатых передач

Большинство механических передач включает в себя зубчатые зацепления. Зубчатые передачи используются для изменения скоростей вращательного движения, направлений вращения и моментов. Они служат для преобразования вращательного движения в поступательное и наоборот, для изменения пространственного расположения элементов трансмиссии и осуществления многих других функций, необходимых для работы машин и механизмов.

Механизмы зубчатых передач

Зубчатые зацепления применяются для передачи вращательного движения от двигателя к исполнительному органу.

При этом производятся необходимые преобразования движения, изменение частоты вращения, крутящего момента, направления осей вращения.

Для всего этого служат различные виды передач. Классификация видов зубчатых передач по расположению осей вращения:

  1. Цилиндрическая передача состоит из колёсной пары обычно с разным числом зубьев. Оси зубчатых колёс в цилиндрической передаче параллельны. Отношение чисел зубьев называется передаточным отношением. Малое зубчатое колесо называется шестернёй, большое — колесом. Если шестерня ведущая, а передаточное число больше единицы, то говорят о понижающей передаче. Частота вращения колеса будет меньше частоты вращения шестерни. Одновременно при уменьшении угловой скорости увеличивается крутящий момент на валу. Если передаточное число меньше единицы, то это повышающая передача.
  2. Коническое зацепление. Характеризуется тем, что оси зубчатых колёс пересекаются и вращение передаётся между валами, которые расположены под определённым углом. В зависимости от того, какое колесо в передаче ведущее, они тоже могут быть повышающими и понижающими.
  3. Червячная передача имеет скрещивающиеся оси вращения. Большие передаточные числа получаются из-за соотношения числа зубьев колеса и числа заходов червяка. Червяки используются одно-, двух- или четырехзаходные. Особенностью червячной передачи является передача вращения только от червяка к червячному колесу. Обратный процесс невозможен из-за трения. Система самотормозящаяся. Этим обусловлено применением червячных редукторов в грузоподъёмных механизмах.
  4. Реечное зацепление. Образовано зубчатым колесом и рейкой. Преобразует вращательное движение в поступательное и наоборот.
  5. Винтовая передача. Применяется при перекрещивающихся валах. Из-за точечного контакта зубья зацепления подвержены повышенному износу под нагрузкой. Применяются винтовые передачи чаще всего в приборах.
  6. Планетарные передачи — это зацепления, в которых применяются зубчатые колёса с подвижными осями. Обычно имеется неподвижное наружное колесо с внутренней резьбой, центральное колесо и водило с сателлитами, которые перемещаются по окружности неподвижного колеса и вращают центральное. Вращение передаётся от водила к центральному колесу или наоборот.

Нужно различать наружное и внутреннее зацепление. При внутреннем зацеплении зубья большего колеса располагаются на внутренней поверхности окружности, и вращение происходит в одном направлении. Это основные виды зацеплений.

Существует огромное количество возможностей для их сочетания и использования в различных кинематических схемах.

Форма зуба

Зацепления различаются по профилю и типу зубьев. По форме зуба различают эвольвентные, круговые и циклоидальные зацепления. Наиболее часто используемыми являются эвольвентные зацепления. Они имеют технологическое превосходство. Нарезка зубьев может производиться простым реечным инструментом. Эти зацепления характеризуются постоянным передаточным отношением, не зависящим от смещения межцентрового расстояния. Но при больших мощностях проявляются недостатки, связанные с небольшим пятном контакта в двух выпуклых поверхностях зубьев. Это может приводить к поверхностным разрушениям и выкрашиванию материала поверхностей.

В круговых зацеплениях выпуклые зубья шестерни сцепляются с вогнутыми колесами и пятно контакта значительно увеличивается. Недостатком этих передач является то, что появляется трение в колёсных парах. Виды зубчатых колёс:

  1. Прямозубые. Это наиболее часто используемый вид колёсных пар. Контактная линия у них параллельна оси вала. Прямозубые колёса сравнительно дешевы, но максимальный передаваемый момент у них меньше, чем у косозубых и шевронных колёс.
  2. Косозубые. Рекомендуется применять при больших частотах вращения, они обеспечивают более плавный ход и уменьшение шума. Недостатком является повышенная нагрузка на подшипники из-за возникновения осевых усилий.
  3. Шевронные. Обладают преимуществами косозубых колёсных пар и не нагружают подшипники осевыми силами, так как силы направлены в разные стороны.
  4. Криволинейные. Применяются при больших передаточных отношениях. Менее шумные и лучше работают на изгиб.

Прямозубые колёсные пары имеют наибольшее распространение. Их легко проектировать, изготавливать и эксплуатировать.

Материалы для изготовления

Основной материал для изготовления колёсных пар — это сталь. Шестерня должна иметь более высокие прочностные характеристики, поэтому колёса часто изготавливают из разных материалов и подвергают разной термической или химико-термической обработке. Шестерни, изготовленные из легированной стали, подвергают поверхностному упрочнению методом азотирования, цементации или цианирования. Для углеродистых сталей используется поверхностная закалка.

Зубья должны обладать высокой поверхностной прочностью, а также более мягкой и вязкой сердцевиной. Это предохранит их от излома и износа поверхности. Колёсные пары тихоходных машин могут быть изготовлены из чугуна. В различных производствах применяются также бронза, латунь и различные пластики.

Способы обработки

Зубчатые колёса изготавливаются из штампованных или литых заготовок методом нарезания зубьев. Нарезание производится методами копирования и обкатки. Обкатка позволяет одним инструментом вырезать зубья различной конфигурации. Инструментами для нарезания могут быть долбяки, червячные фрезы или рейки. Для нарезания методом копирования используются пальцевые фрезы. Термообработка производится после нарезки, но для высокоточных зацеплений после термообработки применяется ещё шлифовка или обкатка.

Обслуживание и расчёт

Техобслуживание заключается в осмотре механизма, проверке целостности зубьев и отсутствия сколов. Проверка правильности зацепления производится при помощи краски, наносимой на зубья. Изучается величина пятна контакта и его расположение по высоте зуба. Регулировка производится установкой прокладок в подшипниковых узлах.

Сначала надо определиться с кинематическими и силовыми характеристиками, необходимыми для работы механизма. Выбирается вид передачи, допустимые нагрузки и габариты, затем подбираются материалы и термообработка. Расчёт включает в себя выбор модуля зацепления, после этого подбираются величины смещений, число зубьев шестерни и колеса, межосевое расстояние, ширина венцов. Все значения можно выбирать по таблицам или использовать специальные компьютерные программы.

Главными условиями, необходимыми для длительной работы зубчатых передач, являются износостойкость контактных поверхностей зубьев и их прочность на изгиб.

Достижению хороших характеристик и уделяется основное внимание при проектировании и изготовлении зубчатых механизмов.

Детали машин

Конструкции зубчатых колес и технология их изготовления

Конструкции зубчатых колес

В зависимости от назначения, размеров и технологии получения заготовки зубчатые колеса могут иметь различную конструкцию.

Цилиндрические и конические шестерни выполняют заодно целое с валом (вал-шестерня). Это связано с малыми размерами шестерен и с тем, что раздельное изготовление снижает точность и увеличивает стоимость производства вследствие увеличения числа посадочных поверхностей, требующих точной обработки, а также вследствие необходимости применения соединений (шлицевых, шпоночных), снижающих точность передачи и прочностные свойства элементов механизма.

Насадные шестерни применяют при больших диаметрах и в тех случаях, когда они должны перемещаться вдоль вала по условиям работы или сборки.
При диаметре dа150 мм колеса изготавливают в форме сплошных дисков из проката или из поковок (рис. 1).
Зубчатые колеса диаметром менее 500 мм получают ковкой (рис. 2), отливкой (рис. 3,а) или сваркой (рис. 3,б).
Колеса диаметром боле 500 мм выполняют отливкой или сваркой.

Иногда зубчатые колеса выполняют в виде узлов, образуемых сборкой отдельных частей (рис. 4). Так, венцы колес могут быть напрессованы на ступицу (бандажированные колеса) (рис. 4,а), крепиться резьбовым соединением (свертные колеса) (рис. 4,б) или приклепываться (клепаные колеса) (рис. 4,в).
Бандажированные, свертные или клепаные колеса применяют в целях экономии легированных сталей или цветных металлов, если таковые используются при изготовлении колеса.

Изготовление зубчатых колес

Заготовки зубчатых колес получают ковкой в штампах или свободной ковкой, реже литьем в зависимости от размеров, материала, формы и масштаба выпуска. Зубья эвольвентных колес изготавливают так, чтобы каждое колесо могло входить в зацепление с колесами того же модуля, имеющими любое число зубьев.
Зубья получают нарезанием или накатыванием.

Нарезание зубьев выполняют одним из двух методов – копированием или обкаткой.

Метод копирования заключается в прорезании впадин между зубьями модульными фрезами (рис. 5): дисковыми (а) или концевыми (б). После прорезания каждой впадины заготовку поворачивают на шаг зацепления. Профиль впадины является копией профиля режущих кромок фрезы, отсюда и название – метод копирования.
Точность нарезаемых зубьев невысокая, метод является малопроизводительным, поэтому его применяют, преимущественно, в ремонтном производстве.

Читать еще:  Сталь 30хгса: расшифровка, характеристики, применение и особенности

Метод обкатки имеет основное применение. Нарезание зубьев по этому методу основано на воспроизведении зацепления зубчатой пары, одним из элементов которой является режущий инструмент – червячная фреза (рис. 6,а), долбяк (рис. 6,б) или реечный долбяк – гребенка (рис. 8.).

Червячная фреза имеет в осевом сечении форму инструментальной рейки. При нарезании зубьев заготовка и фреза вращаются вокруг своих осей, обеспечивая непрерывность процесса.
Нарезание зубьев червячными фрезами широко применяют для изготовления колес с внешним расположением зубьев.
Для нарезания колес с внутренним расположением зубьев применяют долбяки.

Гребенками (см. рис. 8) нарезают прямозубые и косозубые колеса с большим модулем зацепления.
Нарезание зубьев конических колес методом обкатки производят строганием (рис. 7,а), фрезерованием (рис. 7,б), резцовыми головками.

Накатывание зубьев применяют в массовом производстве. Предварительное формообразование зубьев цилиндрических и конических колес производят горячим накатыванием. Венец стальной заготовки нагревают токами высокой частоты (ТВЧ) до 1200 ˚С, а затем обкатывают между колесами-накатниками. При этом на венце выдавливаются зубья. Для получения колес более высокой точности производят последующую механическую обработку зубьев или холодное накатывание – калибровку. Холодное накатывание зубьев применяют при модуле до 1 мм.

Накатывание зубьев – высокопроизводительный метод изготовления колес с минимальным отходом металла в стружку.

Отделка (доводка) зубьев

Зубья колес точных зубчатых передач после нарезания подвергают отделке шевингованием, шлифованием, притиркой или обкаткой.

Шевингование применяют для тонкой обработки незакаленных зубьев.
Выполняют специальным инструментом – шевером, имеющим вид зубчатого колеса с узкими канавками на поверхности зубьев. Вращаясь в зацеплении с обрабатываемым колесом, шевер снимает режущими кромками канавок волосообразную стружку с зубьев колеса, доводя его форму до требуемой точности.

Шлифование применяют для обработки закаленных зубьев. Выполняют шлифовальными кругами способом копирования или обкатки.

Притирку используют для отделки закаленных зубьев колес. Выполняют притиром – чугунным точно изготовленным колесом с использованием притирочных паст.

Обкатку применяют для сглаживания шероховатостей на рабочих поверхностях зубьев незакаленных колес. В течение 1…2 минут зубчатое колесо обкатывают под нагрузкой с эталонным колесом высокой твердости.

Скольжение при взаимодействии зубьев

При работе колес зацепление двух зубьев происходит по рабочим участкам профилей, при этом рабочие участки профилей одновременно перекатываются и скользят друг по другу. Скольжение вызвано тем, что за один и тот же промежуток времени контактируют участки головок большей длины с соответствующими им участками ножек зубьев меньшей длины. Скорость скольжения зубьев в крайних точках зацепления имеет максимальное значение, и равна нулю в полюсе зацепления, при этом при переходе точки зацепления через полюс скорость скольжения меняет знак (рис. 10).

Точки профилей головок зубьев имеют бόльшие касательные скорости, чем точки ножек, следовательно, поверхности головок являются опережающими. Бόльшему изнашиванию подвержена ножка, меньшему – головка, что приводит к искажению профиля зуба, особенно в открытых передачах.

Неравномерное скольжение зубьев является недостатком эвольвентного зацепления. Малые значения скорости скольжения в околополюсной зоне увеличивают коэффициент трения в этой зоне, что создает предпосылки для выкрашивания рабочих поверхностей зубьев в результате контактных напряжений.

Влияние числа зубьев на форму и прочность зуба

Изменение числа зубьев приводит к изменению формы зуба. У рейки с числом зубьев z стремящимся к бесконечности зуб прямобочный (рис. 11,а); с уменьшением количества зубьев увеличивается кривизна эвольвентного профиля, а толщина зуба у основания и вершины уменьшается.

При уменьшении количества зубьев ниже предельного появляется подрез ножки зуба режущей кромкой инструмента (рис. 11, в), в результате чего прочность зуба резко снижается. Из-за среза части эвольвенты у ножки зуба (рис. 12) уменьшается длина рабочего участка профиля, в результате чего понижается коэффициент перекрытия εα и возрастает изнашивание.

Чтобы исключить подрезание ножки зуба при малом z инструментальной рейке необходимо сообщить смещение xm (рис. 13, а), при котором вершина ее зуба выйдет из зацепления с зубом колеса 2 в точке S и эвольвента профиля получится полной, не подрезанной (рис. 13, б). При этом избыточная часть рейки не будет подрезать зуб.

Величину xm называют абсолютным смещением рейки, величину x – относительным смещением рейки, или коэффициентом смещения.

Минимальное количество зубьев шестерни, у которой исключено подрезание зубьев без смещения рейки (т. е. при x = ) можно определить по формуле:

При αw = 20˚ минимальное количество зубьев zmin = 17.

С увеличением количества зубьев возрастает коэффициент перекрытия εα , повышается плавность работы передачи, уменьшаются потери на трение и стоимость изготовления колес. Оптимальное количество зубьев колес, используемых в зубчатых передачах и редукторах, принимают равным zmin = 18…35.

Зубчатые передачи со смещением

Передачу со смещением образуют зубчатые колеса, у которых нарезание зубьев осуществляют со смещением рейки на величину xm (рис. 13). Изменение формы зуба по сравнению с исходным зацеплением при нарезании со смещением называют модификацией профиля.
Модифицированный профиль зуба очерчивается другим (смещенным) участком той же эвольвенты, что и профиль немодифицированного зуба.

Модификацию применяют:
— для устранения подрезания зубьев шестерни при малом количестве зубьев;
— для повышения изгибной прочности зубьев, что достигается увеличением их толщины;
— для повышения контактной прочности, что достигается увеличением радиуса кривизны в полюсе зацепления;
— для получения заданного межосевого расстояния передачи.

Положительным называют смещение рейки от центра зубчатого колеса, отрицательным – к центру.
При положительном смещении увеличивается толщина зуба у основания (рис. 14), что повышает его прочность на изгиб, но при этом заостряется головка зуба, что ограничивает величину смещения инструмента при нарезании.
При отрицательном смещении имеет место обратное явление.

У зубчатых колес со смещением толщина зуба и ширина впадины по делительной окружности неодинаковы, но в сумме остаются равными шагу р .

В зависимости от сочетания смещений при нарезании зубьев парных зубчатых колес модификация бывает высотной и угловой.

Высотная модификация

При высотной модификации шестерню изготовляют с положительным коэффициентом смещения, а колесо – с отрицательным, при этом абсолютные величины смещений должны быть равны, в результате чего суммарный коэффициент смещения будет равен нулю. Такие передачи называют равносмещенными.
При высотной модификации зубчатой пары диаметры делительных окружностей шестерни и колеса совпадают, как и в передаче без смещения, следовательно, межосевое расстояние, коэффициент перекрытия и угол зацепления остаются неизменными. Общая высота зубьев также не меняется по сравнению с ее нормальным значением, но изменяется соотношение между высотой головок и ножек зубьев. Поэтому такая модификация и называется высотной.

Высотную модификацию применяют при малом числе зубьев шестерни и большом передаточном числе, когда требуется обеспечить такие формы зубьев шестерни и колеса, при которых они будут примерно равнопрочными на изгиб.

Угловая модификация

Угловая модификация является общим случаем модифицирования, при котором суммарный коэффициент смещения пары колес не равен нулю, т. е. смещение у шестерни и у колеса неодинаковы по абсолютной величине.
Угловая модификация по сравнению с высотной дает значительно бόльшие возможности влиять на различные параметры зацепления (межосевое расстояние, угол зацепления, угол перекрытия и т. п.), поэтому она применяется чаще.

Модифицированные зубчатые колеса изготавливают тем же стандартным инструментом и на том же оборудовании, что и немодифицированные. Для получения нормальной высоты зуба диаметры заготовок соответственно увеличивают или уменьшают на величину удвоенного смещения инструмента.
Иногда модифицированные колеса называют корригированными (устаревшая терминология).

Точность зубчатых передач

При изготовлении зубчатых передач неизбежны погрешности, которые выражаются в радиальном биении зубчатого венца, отклонениях шага, профиля зуба, соосности осей колес, колебании межосевого расстояния и др.
Эти погрешности приводят к повышенному шуму во время работы передачи, потере точности вращения ведомого колеса, нарушению правильности и плавности зацепления, повышению динамичности и снижению равномерности распределения действующей в зацеплении нагрузки по длине контактных линий и, в конечном счете, определяют ресурс и работоспособность передачи.

Тем не менее, выполнять зубчатые передачи со слишком высокой точностью не всегда целесообразно, поскольку это приводит к удорожанию механизма в целом. Поэтому стандартом регламентируется точность зубчатых колес и передач в зависимости от их назначения и условий работы.
Допуски на цилиндрически зубчатые передачи определяются стандартом ГОСТ 1643–81.

Этим стандартом установлено 12 степеней точности зубчатых колёс и передач: 1, 2, 3 … 12 в порядке убывания точности. Для степеней точности 1 и 2 и 12 допуски стандартом не предусмотрены (для перспективы).

Наибольшее распространение имеют 6,7, 8 и 9-я степени точности: 6-я степень соответствует высокоточным скоростным передачам, 7-я – передачам нормальной точности, работающим с повышенными скоростями и умеренными нагрузками или с умеренными скоростями и повышенными нагрузками, 8-я передачам общего машиностроения пониженной точности, 9-я – тихоходным передачам машин низкой точности.

Для каждой степени точности установлены независимые нормы допускаемых отклонений параметров, определяющих:

  • кинематическую точность колёс и передачи (регламентирует погрешность углов поворота зацепляющихся пар колес за один оборот);
  • плавность работы (регламентирует колебания скорости за один оборот колеса, вызывающие шум и динамические нагрузки);
  • контакт зубьев зубчатых колёс в передаче (регламентирует концентрацию нагрузки на зубьях, определяющую работоспособность силовых передач).
Читать еще:  Какие токарные работы производит токарь по металлу на различных станках

Также ГОСТ 1643–81 устанавливает шесть видов сопряжений определяющих гарантированный боковой зазор между неконтактирующими поверхностями смежных зубьев.
Боковой зазор необходим для предотвращения заклинивания зубьев передачи от нагрева, размещения смазочного материала и обеспечения свободного вращения колес.
Размер зазора задают видом сопряжения зубчатых колес в передаче: Н – нулевой зазор, Е –малый зазор, D и С – уменьшенные зазоры, В – нормальный зазор, А – увеличенный зазор.
В общем машиностроении чаще всего применяют вид сопряжения В, а для реверсивных передач – С.
Получение боковых зазоров связано с точностью изготовления колес.

Краткие сведения о методах изготовления зубчатых колес, их конструкциях, материалах

Существуют следующие способы изготовления зубчатых колес (обра­ботки зубьев):

— литье (без последующей механической обработки зубьев), для совре­менных машин этот способ применяют редко;

— накатка зубьев на заготовке (также без последующей их обработки);

— нарезание зубьев (т. е. зубья получаются в процессе механической обработки заготовки).

Способ изготовления зубчатых колес выбирают в зависимости от их на­значения и по технологическим соображениям.

Для отдельных конструкций машин в массовом производстве применя­ют способ накатки зубьев. Возможны также штамповка, протягивание и. т. д. В этом случае форма инструмента повторяет очертания впадины зубьев). В большинстве же случаев зубчатые колеса изготовляют наре­занием.

Зубья нарезают, как правило, методами копирования и обкатки. Ко­пирование заключается в прорезании впадин между зубьями с помощью тисковой (рис. 2) или пальцевой (рис. 3) фрезы.

Рис. 2. Нарезание зубьев методом ко­пирования дисковой фрезой

Рис. 3. Нарезание зубьев пальцевой фрезой

Обработка зубьев по методу обкатки производится инструментами очертаниями, отличными от очертаний нарезаемых зубьев, долбяком (рис.4 — зуб наружного зацепления, рис.5 — зуб внутреннего зацепления), червячной фрезой (рис.6) или инструментальной рейкой (рис.7):

Достоинством метода обкатки (огибания) является то, что он позволяет одним и тем же инструментом изготовлять колеса с зубьями различное формы. Изменяя относительное расположение инструмента и заготовки на станке, можно получать зубья различной формы и толщины (передачи со смещением).

Обкатка по сравнению со способом копирования обеспечивает боль­шую точность и производительность.

Рис.4. Нарезание зубьев на­ружного зацепления.

Рис.5. Нарезание зубьев внутреннего зацепления

Рис.6. Нарезание зубьев червячной фрезой

Рис.7. Нарезание зубьев инструментальной рейкой

Рис.8. Нарезание зубьев конического колеса

Для достижения высокой точности и малой шероховатости поверхности зубьев после нарезания производится их отделка.

Способы отделки зубьев:

— шлифование — производится методом копирования или обкатки шлифовальным кругом;

— шевингование — выполняется специальным инструментом шевер-шестерней или шевер-рейкой (обкатывая обрабатываемое коле­со, шевер отделывает зубья до требуемых точности и шероховатости поверхности);

— притирка — производится с помощью специального чугунного колеса (притира), находящегося в зацеплении с обрабатываемым колесом.

В зависимости от способа получения заготовки зубчатые колеса подразделяют на литые (рис.9), кованые или штампованные, изготовлен­ные механической обработкой (рис. 10), сварные (рис.11).

Рис. 9. Литое зубча­тое колесо

Рис. 10. Кованое или штампованное

Рис. 11. Сварное зубчатое колесо колесо, механически обработанное

Зубчатые колеса, у которых диаметр впадин незначительно превышает диаметр вала в месте посадки зубчатого колеса, изготовляют за одно целое с валом. Такую конструкцию (рис. 12) называют валом-шестерней. В ос­тальных случаях зубчатое колесо выполняется отдельно, после чего наса­живается на вал.

Рис. 12. Вал-шестерня

Колеса диаметром меньше 400 мм имеют форму диска с выточками (см. рис.9) или без выточек. Чаще всего эти колеса изготовляют из поко­вок. Колеса диаметром более 400-500 мм изготовляют со спицами (рис.13) различного сечения.

Рис. 13. Зубчатое колесо со спицами

При конструировании колеса наиболее важным требованием является его жесткость. Основные соотношения элементов зубчатых колес в зависи­мости от их конструкции приведены в специальных справочниках.

Для экономии высокопрочных дорогостоящих материалов изготовляют сборные конструкции — бандажированные колеса (рис. 14). В этом слу­чае зубчатый венец колеса изготовляют из качественной стали, а централь­ную часть делают из менее дорогого материала (например, чугуна).

Рис. 14. Зубчатый венец бандажированного колеса

Для изготовления зубчатых колес применяют следующие материалы:

— сталь углеродистую обыкновенного качества марок Ст5, Ст6; качест­венную сталь марок 35, 40, 45, 50, 55; легированную сталь марок 12ХНЗА, 30ХГС, 40Х, 35Х, 40ХН, 50Г; сталь 35Л, 45Л, 55Л;

— серый чугун марок СЧ10, СЧ15, СЧ20, СЧ25, СЧ30, СЧ40, высокока­чественный чугун марок ВЧ50-2, ВЧ45-5;

— неметаллические материалы (текстолит марок ПТК, ПТ, ПТ-1, лигнофоль, бакелит, капрон и др.).

Практикой эксплуатации и специальными исследованиями установлено, что нагрузка, допускаемая по контактной про­чности зубьев, определяется в основном твердостью материала. Высокую твердость в сочетании с другими характеристиками, а следовательно, малые габариты и массу передачи можно получить при изготовлении зубчатых колес из сталей, подвер­гнутых термообработке. Сталь в настоящее время — основной материал для изготовления зубчатых колес и в особенности для зубчатых колес высоконагруженных передач (табл.1).

Таблица 1. Механические свойства сталей

Важнейшими критериями работоспособности зубчатых колёс приводов являются объёмная прочность зубьев и износостойкость их активных поверхностей. Нагрузочная способность хорошо смазанных поверхностей ограничивается сопротивлением выкрашиванию. Для уменьшения расхода материалов назначают высокую твёрдость трущихся поверхностей.

Несущая способность зубчатых передач по контактной прочности тем выше, чем выше поверхностная твердость зубьев. Повышение твердости в два раза позволяет уменьшить массу редуктора примерно в четыре раза.

В зависимости от твердости (или термообработки) стальные зубчатые, колеса разделяют на две основные группы: твердостью Н 350 НВ — с объемной закалкой, закалкой ТВЧ, цементацией, азотированием и др. Эти группы различны по технологии, нагрузочной способности и способности к при­работке.

Твердость материала Н H2 + (10. 15) HB

Технологические преимущества материала при Н 350 НВ (вторая группа материалов) твердость вы­ражается обычно в единицах Роквелла— HRC (1HRC = 10 HB).

Объемная закалка — наиболее простой способ получения высокой твердости зубьев. При этом зуб становится твердым по всему объему. Для объемной закалки используют углеродис­тые и легированные стали со средним содержанием углерода 0,35. 0,5% (стали 45, 40Х, 40ХН и т. д.). Твердость на поверхности зуба 45. 55 HRC.

Недостатки объемной закалки: коробление зубьев и необ­ходимость последующих отделочных операций, понижение изгибной прочности при ударных нагрузках (материал приоб­ретает хрупкость); ограничение размеров заготовок, которые могут воспринимать объемную закалку. Последнее связано с тем, что для получения необходимой твердости при закалке скорость охлаждения не должна быть ниже критической. С увеличением размеров сечений детали скорость охлаждения падает, и если ее значение будет меньше критической, то получается так называемая мягкая закалка. Мягкая закалка дает пониженную твердость.

Поверхностная закалка токами высокой частоты или пламенем ацетиленовой горелки обеспечивает Н = (48. 54) HRC и применима для сравнительно крупных зубьев (m > 5 мм). При малых модулях опасно прокаливание зуба насквозь, что делает зуб хрупким и сопровождается его короблением. При относительно тонком поверхностном закаливании зуб искажа­ется мало. И все же без дополнительных отделочных операций трудно обеспечить степень точности выше 8-й. Закалка ТВЧ требует специального оборудования и строгого соблюдения режимов обработки. Стоимость обработки ТВЧ значительно возрастает с увеличением размеров колес. Для поверхностной закалки используют стали 40Х, 40ХН, 45 и др.

Цементация(насыщение углеродом поверхностного слоя с последующей закалкой) — длительный и дорогой процесс. Однако она обеспечивает очень высокую твердость (58. 63HRC). При закалке после цементации форма зуба искажается, а поэтому требуются отделочные операции. Для цементации применяют низкоуглеродистые стали простые (сталь 15 и 20) и легированные (20Х, 12ХНЗА и др.). Легированные стали обеспечивают повышенную прочность сердцевины и этим предохраняют продавливание хрупкого поверхностного слоя при перегрузках. Глубина цементации около 0,1 . 0,15 от толщины зуба, но не более 1,5. 2 мм.

Нитроцементация — насыщение углеродом в газовой среде. При этом по сравнению с цементацией сокращаются длитель­ность и стоимость процесса,- упрочняется тонкий поверхностный слой (0,3. 0,8 мм) до 60. 63 HRC, коробление уменьшается, что позволяет избавиться от последующего шлифования. Нитроцементация удобна в массовом производстве и получила широкое применение в редукторах общего назначения, в автомобилестро­ении и других отраслях — материалы 25ХГМ, 25ХГТ и др.

Азотирование (насыщение поверхностного слоя азотом) обеспечивает не меньшую твердость, чем при цементации.

Малая толщина твердого слоя (около 0,1. 0,6 мм) делает зубья чувствительными к перегрузкам и непригодными для работы в условиях повышенного абразивного износа (например, плохая защита от загрязнения). Степень коробления при азотировании мала. Поэтому этот вид термообработки особен­но целесообразно применять в тех случаях, когда трудно выполнить шлифование зубьев (например, колеса с внутренними зубьями). Для азотируемых колес применяют молибденовую сталь 38ХМЮА или ее заменители 38ХВФЮА и 38ХЮА. Заготовку зубчатого колеса, предназначенного для азотирова­ния, подвергают улучшению в целях повышения прочности сердцевины..

Читать еще:  Особенности сварочного автомата: устройство, виды аппаратов, преимущества

При отсутствии абразивного износа целесообразно приме­нять так называемое мягкое азотирование на глубину 10. 15 мкм. Оно значительно проще, обеспечивает минимальное коробление и позволяет получать зубья 7-й степени точности без отделочных операций. Для мягкого азотирования применя­ют улучшенные хромистые стали типа 40Х, 40ХФА, 40Х2НМА.

Как было отмечено, высокая твердость зубьев значительно повышает их контактную прочность. В этих условиях реша­ющей может оказаться не контактная, а изгибная прочность. Для повышения изгибной прочности высокотвердых зубьев рекомендуют проводить упрочнение галтелей путем дробест­руйного наклепа, накатки и т. п.

В зависимости от способа получения заготовки различают литые, кованые, штампованные колеса и колеса, изготовляемые из круглого проката. Стальное литье обладает пониженной прочностью и используется обычно для колес крупных раз­меров, работающих в паре с кованой шестерней.

В зависимости от вида изделия, условий его эксплуатации, требований к габаритным размерам и квалиметрическим характеристикам, выбирают материалы зубчатых колес и необходимую термообработку.

На практике применяют следующие варианты химико – термической обработки (Т.О.):

Виды зубчатых передач;

Описание зубчатых передач

ОБЩИЕ СВЕДЕНИЯ О ЗУБЧАТЫХ ПЕРЕДАЧАХ

Зубчатые передачи являются разновидностью механических передач, работающих на принципе зацепления. Их используют для передачи и преобразования вращательного движения между валами.

Зубчатые передачи отличаются высоким КПД (для одной ступени – 0,97-0,99 и выше), надежностью и длительным сроком службы, компактностью, стабильностью передаточного отношения из-за отсутствия проскальзывания. Зубчатые передачи применяют в широком диапазоне скоростей (до 200 м/сек), мощностей (до 300 МВт). Размеры зубчатых колес могут быть от долей миллиметра до нескольких метров.

К недостаткам можно отнести сравнительно высокую сложность изготовления, необходимость нарезания зубьев с высокой точностью, шум и вибрация при высоких скоростях, большую жесткость, не позволяющая компенсировать динамические нагрузки.

Передаточные числа в редукторных передачах могут достигать 8, в открытых передачах – до 20, в коробках передач – до 4.

По расположению зубьев различают передачи с наружным и внутренним зацеплением.

Конструктивно зубчатые передачи большей частью выполняются закрытыми в общем жестком корпусе, что обеспечивает высокую точность сборки. Лишь тихоходные передачи (v

Цилиндрические зубчатые передачи бывают прямозубыми, косозубыми и шевронными.

Прямозубые колеса (рис. 2.1а) применяют преимущественно при невысоких и средних окружных скоростях, при большой твердости зубьев (когда динамические нагрузки от неточностей изготовления невелики по сравнению с полезными), в планетарных передачах, в открытых передачах, а также при необходимости осевого перемещения колес (в коробках передач).

Косозубые колеса (рис. 2.1б) обладают более высокой нагрузочной способностью (за счет большей длины зуба при одинаковой ширине зубчатого венца), повышенной плавностью и пониженной шумностью, поэтому их применяют для ответственных передач при средних и высоких скоростях. Объем их применения – свыше 40 % объема применения всех цилиндрических колес в машинах.

Косозубые колеса с твердыми поверхностями зубьев требуют повышенной защиты от загрязнений во избежание неравномерности износа по длине контактных линий и опасности выкрашивания. В косозубом зацеплении возникает осевая сила, которую надо учитывать при проектировании опор и валов.

Шевронные колеса (рис. 2.1в) обладают всеми преимуществами косозубых колес, и при этом отсутствует вредная осевая сила, но их технология изготовления сложней.

Для прямозубых колес угол наклона зубьев b = 0°, для косозубых — b = 8. 20°, для шевронных — b = 25. 40°.

В косозубых передачах редукторов для шестерен рекомендуют принимать направление зуба левое, для колес – правое.

Большинство серийных редукторов имеют косозубые колеса, причем и в быстроходных и в тихоходных ступенях.

Среди конических зубчатых передач наибольшее распространение в машиностроении имеют передачи с прямыми зубьями. Также часто применяются передачи с круговыми зубьями. Гораздо реже – с тангенциальными и другими криволинейными зубьями.

Прямозубые конические передачи (рис. 2.2а) применяют при невысоких окружных скоростях (до 2…3 м/сек, допустимо до 8 м/сек), как наиболее простые в монтаже.

Конические передачи с круговыми зубьями (рис. 2.2б) имеют более плавное зацепление и поэтому большие быстроходность и несущую способность. Они более технологичны.

2.3Материалы зубчатых колес и термическая или химико-термическая обработка

Материалы зубчатых колес и термическая или химико-термическая обработка выбираются в зависимости от назначения передачи, условий эксплуатации и требований к габаритным размерам.

Для повышения несущей способности передач целесообразно повышение твердости поверхности зубьев, т.к. несущая способность передач по контактной прочности пропорциональна квадрату твердости поверхности зубьев. Однако повышение твердости материала отрицательно сказывается на изгибной прочности. Для повышения изгибной прочности желательно сохранять вязкую сердцевину зуба. Поэтому в основном применяется поверхностная термическая или химико-термическая обработка.

Способы упрочнения:

· Нормализация позволяет получить твердость 180…220 HB, поэтому нагрузочная способность относительно невелика, но при этом зубья колес хорошо прирабатываются и сохраняют точность, полученную при механической обработке. Нормализованные колеса обычно используют во вспомогательных механизмах, например, в механизмах ручного управления.

Применяемые стали: 40, 45, 50 и др. Для повышения стойкости против заедания шестерни и колеса следует изготавливать из разных материалов.

· Улучшение позволяет получить твердость поверхности и сердцевины 200…240 HB (для небольших шестерен 280…320 HB), нагрузочная способность несколько выше, чем при нормализации, но зубья колес прирабатываются хуже. Обычно улучшенные колеса применяют в условиях мелкосерийного и единичного производства при отсутствии жестких требований к габаритам.

Применяемые стали: 40, 45, 50Г, 35ХГС, 40Х и др.

· Закалка токами высокой частоты (ТВЧ) дает среднюю нагрузочную способность при достаточно простой технологии упрочнения. Позволяет достигать поверхностной твердости 45…55 HRC при глубине упрочненного слоя до 3…4 мм. Закалке ТВЧ обычно предшествует улучшение, поэтому механические свойства сердцевины – как при улучшении. Изгибная прочность по сравнению с объемной закалкой выше в 1,5-2 раза. Из-за повышенной твердости зубьев передачи плохо прирабатываются. Размеры зубчатых колес практически неограниченны. Необходимо помнить, что при модулях менее 3…5 мм, зуб прокаливается насквозь, что приводит к значительному их короблению и снижению ударной вязкости.

Применяемые стали: 40Х, 40ХН, 35ХМ, 35ХГСА.

· Цементация (поверхностное насыщение углеродом) с последующей закалкой ТВЧ и обязательной шлифовкой позволяет получить поверхностную твердость 56…63 HRC при глубине упрочненного слоя 0,5…2 мм. Нагрузочная способность высокая, но технология упрочнения более сложная. Изгибная прочность по сравнению с объемной закалкой выше в 2-2,5 раза.

Широко применяют сталь 20Х, а для ответственных зубчатых колес, особенно работающих с перегрузками и ударными нагрузками, стали 12ХН3А, 20ХНМ, 18ХГТ, 25ХГМ, 15ХФ.

· Азотирование (поверхностное насыщение азотом) обеспечивает высокую твердость и износостойкость поверхностных слоев, при этом не требуется последующая закалка и шлифование. Азотирование позволяет получить поверхностную твердость 58…67 HRC при глубине упрочненного слоя 0,2…0,5 мм. Малая толщина упрочненного слоя не позволяет применять азотированные колеса при ударных нагрузках и при работе с интенсивным изнашиванием (при загрязненной смазке, попадании абразива). Длительность процесса азотирования достигает 40-60 часов. Обычно азотирование применяют для колес с внутренним зацеплением и других, шлифование которых затруднено.

Применяют молибденовую сталь 38Х2МЮА, но возможно азотирование сталей 40ХФА, 40ХНА, 40Х до меньшей твердости, но большей вязкости.

· Нитроцементация – насыщение поверхностных слоев углеродом и азотом в газовой среде с последующей закалкой обеспечивает высокую контактную прочность, износостойкость и сопротивление заеданиям, обладает достаточно высокой скоростью протекания процесса – около 0,1 мм/час и выше. В связи с малым короблением позволяет во многих случаях обойтись без шлифования. Содержание азота в поверхностном слое позволяет применять менее легированные стали, чем при цементации: 18ХГТ, 25ХГТ, 40Х и др.

2.4Конструкция зубчатых колес

Конструкция зубчатых колес зависит от их размеров, материала, технологии изготовления и эксплуатационных требований.

Шестерни малых размеров, у которых диаметр окружности впадин зубьев близок к диаметру вала, выполняются за одно целое с валом (вал-шестерня) (рис. 2.3).

Колеса, допускающие посадку на вал, как правило, делаются насадными. Это дает возможность подбирать различные, наиболее подходящие материалы и термообработку для вала и колеса, упрощают технологию изготовления этих деталей, и позволяет после износа зубьев колеса производить его замену, сохраняя вал.

Шестерни небольшого диаметра (D £ 200 мм) обычно изготовляются из круглого проката (£ 150 мм), кованных или штампованных заготовок в виде сплошного диска или с выступающей ступицей и др. (рис. 2.4).

Колеса средних размеров (D £ 600 мм) изготовляются из поковок, штампованных или литых заготовок и большей частью имеют дисковую конструкцию (рис. 2.5).

Зубчатые колеса больших размеров можно изготовлять цельнолитыми, с одним или двумя параллельными дисками, подкрепленными ребрами, или со спицами крестовидного, таврового, двутаврового, овального или другой формы сечения (рис. 2.6).

При использовании высококачественных сталей для изготовления зубчатого венца, в целях экономии, колеса могут выполняться бандажированными (посадка с гарантированным натягом) или сборными (на призонных болтах, с помощью сварки или клея) (рис. 2.7).

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector